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How do people choose interventions to learn about causal
systems? Here, we considered two possibilities. First, we test an
information sampling model, information gain, which values inter-
ventions that can discriminate between a learner’s hypotheses (i.e.
possible causal structures). We compare this discriminatory model
to a positive testing strategy that instead aims to confirm individual
hypotheses. Experiment 1 shows that individual behavior is
described best by a mixture of these two alternatives. In
Experiment 2 we find that people are able to adaptively alter their
behavior and adopt the discriminatory model more often after
experiencing that the confirmatory strategy leads to a subjective
performance decrement. In Experiment 3, time pressure leads to
the opposite effect of inducing a change towards the simpler pos-
itive testing strategy. These findings suggest that there is no single
strategy that describes how intervention decisions are made.
Instead, people select strategies in an adaptive fashion that trades
off their expected performance and cognitive effort.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Causal knowledge underlies our intuitive grasp of physics (‘‘Heat causes water to turn to steam.’’),
technology (‘‘This button causes it to go.’’), and helps us understand our fellow human beings
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(‘‘Hunger causes her to be grumpy.’’). Often, the only way to find out about the causal structure of the
world is by manipulating individual variables, and observing the effects of this manipulation. For
example, banning sugary drinks can help decide whether they are a cause of diabetes. These decisions
to manipulate a system are known as interventions (Pearl, 2000) and psychological research has
recently explored how people use these interventions to learn (Bonawitz et al., 2010; Lagnado &
Sloman, 2004; Schulz, Gopnik, & Glymour, 2007; Sloman & Lagnado, 2005; Waldmann & Hagmayer,
2005).

Most research into how people make causal intervention decisions has implicitly sought to identify
the single strategy that characterizes people’s choices best across one or more experiments. For exam-
ple, one proposal is that people search for information that can discriminate between possible
hypotheses about causal structure, for instance by using an information gain (IG) strategy (Bramley,
Lagnado, & Speekenbrink, 2014; Nelson, 2005; Shafto, Goodman, & Griffiths, 2014; Steyvers,
Tenenbaum, Wagenmakers, & Blum, 2003). Alternatively, in the broader hypothesis testing literature
many studies argue that people seek information that yields positive evidence to confirm a single
hypothesis, disregarding alternatives (e.g., Klayman & Ha, 1987; Nickerson, 1998; Wason, 1960).
This mode of search is often referred to as the positive test strategy or PTS because it favors queries that
are expected to yield a positive response (‘‘yes’’, rather than ‘‘no’’) given a single hypothesis. A survey
of the literature on information gathering during learning reveals forceful arguments for each of these
alternatives (Gureckis & Markant, 2012; Nickerson, 1998) even though the division between these
perspectives is not always precise (Navarro & Perfors, 2011; Oaksford & Chater, 1994).

The present paper begins from a slightly different perspective from this past work. In particular, we
first ask if any single strategy model provides a plausible account of intervention-based causal learn-
ing. To that end, we describe a new hierarchical Bayesian method of identifying decision strategies
during causal intervention learning. Using the model, we present evidence that individual participants
adopt a mixture of strategies when learning through causal interventions (Experiment 1). Next, we ask
if such mixtures are stable biases in the way people approach such tasks or if they change in response
to environmental factors. Our second and third experiments show that strategy choice can change
adaptively depending on the current task environment. Such adaptive adjustment of intervention-
based strategies is unanticipated by single strategy models and suggests simple manipulations which
might improve the quality of human reasoning.
1.1. Two perspectives on information gathering

Efficient learning from causal interventions is ultimately a problem of information search. The lear-
ner must decide which intervention to perform in order to gain information about a system’s causal
structure. The following section describes two theories of how people make such decisions and
how they relate to the task of causal intervention learning.
1.1.1. Discriminatory: information gain
The first strategy considered here is based on a rational analysis of the structure learning task

(Anderson, 1990; Chater & Oaksford, 2008; Marr, 1982). According to this perspective, people should
choose interventions that will be maximally useful for distinguishing alternative hypotheses.

To illustrate, consider playing the children’s game ‘‘Guess Who?’’. In this game, one player adopts a
secret identity (e.g., a fictional character or a celebrity). The job of the other players is to reveal this
identity as quickly as possible by asking questions that can be answered with a ‘‘yes’’ or ‘‘no’’. The
space of possible hypotheses (identities) is large in the beginning, but can be reduced by asking reveal-
ing questions. For example ‘‘Is the character male?’’ is a useful question because (assuming the learner
expects a roughly even split of males and females) either answer will cut the number of identities in
half. In contrast, very specific questions like ‘‘Does the character have pointy ears?’’ is a lot less infor-
mative, because the likelihood of ‘‘yes’’ is very low, and a ‘‘no’’ does not reduce the hypothesis space by
much (most people do not have pointy ears). Similarly, a too general query like ‘‘Does this character
have eyes?’’ will do little to narrow down the number of plausible hypotheses, because it is true of
most.
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The intuitive difference between ‘‘good’’ and ‘‘bad’’ questions is captured in a number of formal
models of information gathering (Nelson, 2005). The information gain model (IG) in particular has
been advanced as a normative strategy for a wide number of information search tasks (e.g.,
Austerweil & Griffiths, 2011; Gureckis & Markant, 2009; Klayman & Ha, 1987; Lindley, 1956;
Markant & Gureckis, 2012a, 2012b; Najemnik & Geisler, 2005; Nelson, Divjak, Gudmundsdottir,
Martignon, & Meder, 2014; Oaksford & Chater, 1994, 1994), and was first applied to modeling causal
interventions in the machine-learning literature (Murphy, 2001; Tong & Koller, 2001). It has also had
an important influence on the psychology of learning from causal interventions (Bramley et al., 2014;
Shafto et al., 2014; Steyvers et al., 2003). According to IG, interventions are made with the goal of
decreasing the learner’s uncertainty about a causal system, given a range of possible structures that
explain its behavior.

To illustrate the core psychological claims of IG it is helpful to review the underlying formalism.
Consider a learner with a range of hypotheses about how the variables of a system might be connected
with one another. Each hypothesis is a different causal structure. These structures can be represented
as causal Bayesian networks, that is, directed acyclic graphs, in which the state of each variable is a
function of the state of its direct parents (Pearl, 2000). IG prescribes that learners should choose the
intervention that minimizes their uncertainty about which graph, g 2 G, is most likely to underlie a
set of observations of a system. A learner’s current uncertainty, HðGÞ, can be measured using the
Shannon entropy defined over possible graphs:
1 We
trial, ign
HðGÞ ¼
X
g2G

PðgÞlog2
1

PðgÞ ð1Þ
The probability of each graph, PðgÞ, is the learner’s subjective belief that graph g is the true generative
process underlying the causal system. This value can be informed by the learner’s prior belief or pre-
vious observations of the causal system, for example. HðGÞ equals zero if PðgÞ equals 1 for one of the
graphs (and 0 for all the others), that is, when there exists no uncertainty about which hypothesis is
true. It reaches its maximum value when all graphs in G are considered to be equally likely.

A decision maker attempting to learn as much as possible about the system should choose an inter-
vention a that maximally reduces HðGÞ. 1 The difference in uncertainty before and after an intervention
is the information gain associated with that intervention. It depends on the type of action or intervention
that was made, a 2 A, as well as the outcome, o 2 O, that occurred as a result of that action:
IGða; oÞ ¼ HðGÞ � HðGja; oÞ ð2Þ
Because the outcome o is often uncertain before the intervention, a choice policy needs to take into
account the information gain of all possible outcomes weighted by their probability of occurring,
yielding the expected information gain of each possible intervention:
EIGðaÞ ¼ HðGÞ �
X
o2O

PðojaÞHðGja; oÞ ð3Þ
where PðojaÞ is the probability of outcome o given action a. Calculating EIG requires knowing the new
uncertainty after making intervention a and observing outcome o:
HðGja; oÞ ¼
X
g2G

Pðgja; oÞlog2
1

Pðgja; oÞ ð4Þ
where Pðgja; oÞ is the probability of graph g given intervention a and resulting outcome o. To calculate
Pðgja; oÞ, Bayes’ rule can be applied yielding Pðgja; oÞ ¼ Pðojg; aÞPðgÞ=PðojaÞ. Finally, PðojaÞ can be com-
puted by marginalizing over all possible graphs and their likelihood of producing outcome o given
intervention a, Pðojg; aÞ.

Maximizing IG means choosing interventions with the highest expected information gain calcu-
lated using Eq. (3). However, it is likely that people do not always maximize information gain perfectly
follow prior work in assuming that such decision are greedy in that they choose to reduce uncertainty maximally on each
oring the possibility of multi-step decision strategies.
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and may instead select interventions somewhat probabilistically. For example, applications of IG often
assume that people choose options in proportion to their expected value using the softmax choice rule
(Sutton & Barto, 1998):
PðaÞ ¼ expðVðaÞ=sÞP
i expðVðaiÞ=sÞ

ð5Þ
where VðaÞ is the value of an intervention (here: its expected information gain). The parameter s cap-
tures the degree of probabilistic responding, ranging from complete guessing (s!1) to always
choosing the option with the highest value (s! 0).

In sum, the IG model makes predictions about which intervention an individual should perform to
maximally reduce uncertainty. Note that IG is inherently a discriminatory strategy because it favors
interventions that lead to different outcomes under different hypotheses and avoids producing out-
comes that are likely to occur under multiple hypotheses.

However, IG is by no means the only discriminatory sampling strategy that can be applied to causal
interventions (other candidates are discussed for example in Nelson, 2005). We focus on it because it
has been advanced as a strong candidate model in the causal reasoning and information search liter-
ature and because it provides an intuitive account of what it means to ask discriminatory questions
about a set of hypotheses. It also turns out, however, that its predictions for the set of problems used
in this article are very similar to at least one other prominent sampling norm, probability gain (whose
empirical predictions will also be tested below). Thus, our conclusions about IG may generalize to a
wider range of discriminatory models.

1.1.2. Confirmatory: positive test strategy
As mentioned, a large body of research has shown that people often seek confirmatory information

that only pertains to one specific hypothesis. This strategy is often referred to as the positive test strat-
egy (PTS) or positivity bias (Klayman & Ha, 1987). For example, in Wason’s 2-4-6 task (Wason, 1960)
participants have to guess the rule that generated a sequence of numbers by proposing new sequences
and receiving yes/no answers. Given the example sequence 2-4-6, participants often form a strong ini-
tial hypothesis that the rule is increasing even numbers and tend to test only positive examples of this
hypothesis (e.g., 8-10-12) instead of counterexamples, like 1-2-3 or 6-4-2. In the 2-4-6 task, PTS leads
participants to ignore alternative hypotheses about the rule, such as increasing numbers and hence
positive testing is often treated as an obstacle to learning (Nickerson, 1998). Note, however, that there
are conditions under which it can be a successful strategy (Ginzburg & Sejnowski, 1996; Klayman &
Ha, 1989; Navarro & Perfors, 2011; Nelson, Tenenbaum, & Movellan, 2001; Oaksford & Chater, 1994).

Despite the large literature on PTS, it is unclear how this strategy might manifest itself in a causal
structure learning task. We propose that PTS leads to a preference for interventions that have high
causal centrality in a hypothesis that is currently under evaluation (Ahn, Kim, Lassaline, & Dennis,
2000; Kim & Ahn, 2002; Sloman, Love, & Ahn, 1998). Causal variables, or nodes in the causal graph,
are considered central if they have a large number of direct and indirect descendant causal links. If
learners make interventions on central nodes, they can gather positive evidence for a causal hypoth-
esis by activating those links, that is by producing a large number of expected effects (assuming causal
strengths are equal for all links). Because causal graph hypotheses can differ in the number of links
that can be activated in principle, we will consider causal centrality relative to the total number of
possible links in a given structure. Thus, the PTS value of intervening on a node n is determined by that
node’s maximum relative causal centrality over all graphs that are currently under consideration:
PTSn ¼max
g

DescendantLinksn;g

TotalLinksg

� �
ð6Þ
where descendant links are all links that lead to direct or indirect children of n.
To illustrate, a node will have a value of 1 if, by intervening on it, all possible links of at least one

graph can be activated (for example through the root node of a chain). If an intervention can activate
at most one out of two links, it receives a score of .5. A score of zero means it yields no outcomes what-
soever (if the node has no children). The maximum operator in Eq. (6) means that nodes become
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attractive to intervene on if they have a high relative centrality in at least one hypothesis that is cur-
rently evaluated, irrespective of the differences between hypotheses. Although the maximum operator
in Eq. (6) implies that learners consider both hypotheses in choosing an intervention, the intervention
that is favored is one that confirms the largest proportion of links in one hypothesis (rather than, say,
the largest proportion in all hypotheses), consistent with a preference for testing single hypotheses
implied by PTS. Appendix B will present some minor variations of Eq. (6) (e.g., replacing the maximum
operator with a sum) and assess whether they provide better accounts of the data from the upcoming
experiments. To derive concrete choice probabilities from this model, the same softmax choice rule as
described in Eq. (5) can be applied by substituting VðaÞ with PTS scores from Eq. (6).

There exists a clear parallel between this strategy and positive test strategies in classic rule learning
tasks if causal effects are taken as analogues to the positive responses (‘‘yes’’) expected when testing a
rule. The desire to ‘‘receive a yes response’’, which lies at the heart of positive testing, corresponds to a
desire to ‘‘make effects happen’’ in the causal learning scenario. In reality, non-effects can be just as
discriminating as effects, but they do not count as positive examples of a specific graph under this
definition.

It is worth emphasizing again that PTS is not a discriminatory strategy. Interventions become
attractive in virtue of their position in individual hypotheses, irrespective of whether they help distin-
guish hypotheses from each other. Furthermore, in all of the experiments reported here the average
expected choice accuracy (when simulating an optimal learner) after selecting an intervention with
IG is always as least as high as that obtained from PTS. This holds for different values of s in Eq.
(5), as will be reported in more detail below (see Table 1). While this seems intuitive, since PTS is
not a discriminatory strategy, it is still worth pointing out, because the same might not hold in other
domains of information search.

Eq. (6) is a first attempt to capture the essence of confirmatory information search for causal inter-
ventions, one that turns out to work well for our task and empirical results. Section 5 (and Appendix B)
will discuss alternatives that may serve the same purpose.

1.2. Empirically distinguishing the models

To what degree do IG and PTS make different predictions? This question is important in light of
recent analyses showing that discriminatory hypothesis testing and confirmation can make the same
predictions in certain environments (Austerweil & Griffiths, 2011; Navarro & Perfors, 2011; Oaksford &
Chater, 1994). Consider panel A of Fig. 1. Given the two hypothesized graphs depicted at the top of the
panel (H1 and H2) and the opportunity to make a single intervention, both models predict a preference
for intervening on the first two nodes (predictions plotted below the graphs are normalized values of
IG and PTS scores calculated using Eqs. (3) and (6), respectively). According to IG, intervening on n1 or
n2 could reveal the direction of the link between them. Since n3 has no causal effects under either
hypothesis, intervening on this node is expected to have the same outcome. PTS equally values n1

and n2 because these nodes are causally central in either graph (n2 is central in H1 because it can affect
both n1 and n3, n1 is causally central in H2 because it can affect n2 and n3). Thus, data from this prob-
lem cannot distinguish IG and PTS.

On the other hand, their predictions diverge on the example shown on the right (panel B). IG is
agnostic between the three nodes, because intervening on each of them could lead to an outcome that
is not expected under one of the hypotheses. However, PTS predicts a preference for the root nodes of
the two graphs. In particular, for the top hypothesis (H1), n1 is preferred because it is more likely to
Table 1
Average posterior probability of the most likely graph after choosing a single intervention with a given strategy, averaged over the
problems used in Experiment 1.

Model arg max s ¼ :2 s ¼ :5 s ¼ 1 s ¼ 1:5

IG .91 .90 .86 .83 .83
PTS .85 .86 .84 .83 .82
Random .80 .80 .80 .80 .80
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Fig. 1. Example problems with two hypotheses (H1 and H2), and predictions of IG and PTS. Panel A shows two structures for
which IG and PTS predict the same interventions. Panel B shows two structures for which the predictions diverge, showing that
the models are in principle distinguishable in certain cases.
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activate all the links of the graph (i.e., intervening on n1 should affect n2 and, indirectly, n3). In H2, n3 is
preferred for the same reason (it tests all the model’s links, namely, one of them). Our experiments test
a number of problems like this one, for which PTS and IG make different predictions.

1.3. Previous efforts to model intervention decisions

Few studies have directly examined the decision-making processes involved in causal intervention
learning. One notable example is a study by Steyvers et al. (2003) who analyzed people’s interventions
in an ‘‘alien mind reading’’ task using IG. In this task, participants first observed the behavior of a cau-
sal system with three variables (aliens reading the content of each others’ minds) a number of times,
then indicated their favorite hypothesis (i.e., whose mind(s) each alien could read), and then chose one
intervention (plant a thought in one alien’s head and observe who reads it correctly). With three vari-
ables (aliens) participants could in principle entertain 18 different causal structure hypotheses
(assuming only one or two links are possible). Although the authors endorsed IG as a good description
of the intervention data, the model only fit when additional assumptions were introduced. Most
importantly, it was assumed that people tested their favorite hypothesis against its subgraphs, with
very low prior beliefs about any of the other 18 hypotheses. Given this post-hoc assumption (partic-
ipants were not instructed to consider subgraphs) the predictions of this model actually strongly
resembled those of PTS. That is, it favored interventions on central nodes that lead to many expected
effects in a participant’s favorite graph(s) (see Fig. 8 in Steyvers et al., 2003). A pure version of the IG
model using the full posterior distribution over possible graphs after the observation phase did not fit
the data well.

Lagnado and Sloman (2006) reported the frequencies with which participants chose different inter-
ventions (see Table 5 in their article). Again, the majority of interventions were made on high central-
ity nodes with many downstream effects, such as causes with multiple effects or root nodes of causal
chains. A similar result was reported in a study by Hagmayer and Meder (2012) (see Table 1). While
these patterns indicate the possible influence of PTS strategies, these papers did not explicitly model
participants’ intervention decisions.

One common feature of these experiments (also see Bramley et al., 2014; Sobel & Kushnir, 2006) is
that the space of possible causal hypotheses that participants could entertain was left unconstrained
or was quite large (e.g., the 18 possible graphs in Steyvers et al., 2003). Computing the full IG model for
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all hypotheses thus required simulating and comparing the outcomes of a very large number of causal
graphs. Such computations may have made it difficult for participants to use IG in the first place and
could have encouraged a preference for high-centrality interventions, as predicted by PTS. We address
this issue in the present experiments by using a much simpler experimental task with a smaller num-
ber of explicitly enumerated hypotheses to make sure that it would be relatively easy to compute a
discriminatory strategy.
1.4. The current study

In Experiment 1 we aimed to evaluate whether IG or PTS individually provide a credible fit to peo-
ple’s intervention decisions. Unlike past work, we took seriously the possibility that people might use
a mixture of strategies and so developed a modeling framework that characterizes this mixture at an
individual and group level. Using this framework, we then report two further experiments that manip-
ulate aspects of the task and assess their effect on the parameters in the model. Experiment 2 inves-
tigated whether intervention decisions can be modified by changing the strategies’ expected payoff.
By selectively decreasing the expected success that PTS would yield in comparison to IG during one
part of the experiment we could test if participants adaptively change their strategy to be more like
PTS in a later part. Experiment 3 tested whether it is also possible to change participants’ behavior
to be more in line with PTS than IG by adding time pressure. This manipulation is based on the obser-
vation that IG-use was associated with longer response times in Experiment 1, suggesting that it
might require more cognitive effort than PTS.

In all three experiments, participants were asked to make interventions on simple causal systems
to learn their underlying structure. Participants were presented with a large number of problems that
were chosen so that IG and PTS made different predictions on many of them, allowing us to distinguish
the two models.

To avoid stacking the decks in favor of a simpler strategy (like PTS), our experimental protocol kept
the complexity of computing IG at a minimum. Three aspect of our task distinguish our paradigm from
previous work. First, we asked participants to consider only two causal hypotheses on each trial. This is
the simplest case of structure comparison which allows us to model interventions without making
many additional assumptions about participants’ hypothesis space. Second, we used causal structures
without any background causes. This drastically reduces the number of possible outcomes that could
result from an intervention and so facilitates the simulation of outcomes implied by IG. Finally, each
trial provided participants with a bonus payment that decreased with the number of interventions
made on that trial. The intent of this bonus structure was to minimize random exploration and
encourage a search for diagnostic interventions from the start.
1.5. Modeling strategy use

To analyze learners’ interventions, we adopt a hierarchical Bayesian modeling approach.
Hierarchical Bayesian models offer many advantages for analyzing data. For instance, they allow us
to not only estimate participants’ individual parameter values, like the s parameter in Eq. (5), but also
population-level distributions of these parameters, so-called hyperparameters. As a consequence, hier-
archical Bayesian models can capture individual differences while still allowing inferences about the
group level (Lee, 2011). An advantage of using Bayesian inference is that it allows one to assess the
credibility of a wide range of possible parameter values, rather than dealing only with point estimates
(Kruschke, 2010). We exploit the advantages of hierarchical Bayesian modeling to identify which
strategy or strategies describes people’s behavior best, and what factors influence strategy use.

First, to test how well each strategy fits the data, the hierarchical approach lets us conduct poste-
rior predictive checks (Gelman, Meng, & Stern, 1996) of the individual strategies (IG and PTS), as well
as a mixture of the two. This method uses the population-level hyperparameters from a fitted model
to generate choice data of groups of simulated participants with the same sample size (N) as the
experiment. These simulated data sets provide a range of behavioral patterns that could have plausi-
bly been observed if people were actually choosing interventions in line with the fitted model. A
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comparison of the simulated and empirical data can reveal whether a model provides a plausible
account of people’s behavior.

Second, the hierarchical model allows us to compare hyperparameters across experiments and
experimental manipulations. Because we will model behavior as a mixture of PTS and IG, we can,
for example, compare the population-level mixture weight in different experimental conditions to
check for differences in strategy use (this method bears some similarity to an ANOVA within a fre-
quentist null-hypothesis testing framework, see Kruschke, 2013).

Note that despite adopting a fully Bayesian analysis approach, we sometimes show maximum-like-
lihood (ML) estimates of parameter values rather than estimates from the Bayesian model. We do so
because the latter are generally subject to shrinkage imposed by the hyperparameters in the hierarchi-
cal model, that is, they tend to become less extreme compared to ML estimates. While this can be a
desirable property of hierarchical models, it can lead to an overcorrection of extreme values, especially
when data are sparse (Scheibehenne & Pachur, 2013).
2. Experiment 1

Experiment 1 represents an exploratory study of learning via causal interventions. In addition to
comparing model predictions, we analyze different ad-hoc dependent measures with the aim of
understanding participants’ decision strategies. These preliminary analyses set the stage for the exper-
imental studies reported in Experiments 2 and 3.

2.1. Method

2.1.1. Participants
We recruited 105 participants (50 women and 55 men) aged 18–64 (M = 34.3 years, SD = 12) via

Amazon Mechanical Turk (AMT). Participation was restricted to AMT users who reported living in
the US. Participants were paid $2 for participation with the option of earning up to another $1 bonus
based on their performance in the task. All participants were assigned to a single experimental
condition.

2.1.2. Stimuli and materials
On each trial, participants were presented with a simple causal system and asked to learn how it

worked. The systems were described as computer chips with three components (nodes), which could
either be on or off as indicated by their color (green2 or red, respectively). Within a given chip some
components were causally connected so that the value of one node could influence the state of another
node. The locations of the nodes of each new chip were randomly distributed into five possible positions
to control for the influence of spatial position on participants’ intervention choices.

Two possibilities or hypotheses of how the chip worked were shown as diagrams above the chip.
These diagrams were spatially congruent with the placement of components on the chip, and causal
links were indicated with arrows (see Fig. 2). On each trial, one of the two hypotheses was randomly
selected to be the true underlying structure of the test chip. Participants interacted with the chip to
determine which hypothesis described its operation (see below).

All possible three-node structures with one or two links were tested, yielding four basic structure
types: Common-cause structures (e.g. A affects both B and C), common-effect structures (e.g. both A
and B can affect C), chain structures (e.g. A affects B and B affects C), and one-link structures (A affects
B, C is independent). For common-effect structures, we used the noisy-or integration function, which
states that multiple causes are independently sufficient to make the common effect occur (Cheng,
1997).

The four structure types were paired with one another to yield 27 structure comparisons, which
made up the two hypotheses for a given trial (see Fig. 3). Participants completed all 27 comparisons
once in a pseudo-random order (see below). All links had causal strengths of 0.8, such that there was
2 For interpretation of color in Fig. 2, the reader is referred to the web version of this article.



Fig. 2. Intervention phase of Experiment 1 which was repeated for each of the 27 problem types. The true underlying causal
graph was selected randomly. Participants could make as many interventions as they wished, but lost $0.10 of a potential bonus
payment with each intervention.
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an 8/10 chance that an active parent node would turn on its direct descendants. No background causes
existed that could turn on nodes spontaneously (i.e., nodes could only be activated through an inter-
vention or through an active parent node). Some of the comparisons strongly distinguished IG from
the PTS strategy (highlighted in gray in Fig. 3), while for others the models made similar predictions
(see example in Fig. 1).

To test for learning effects over the course of the experiment, the 27 comparisons were divided into
three groups of nine, so that behavior for each of the groups could be compared when a group was
presented early (trials 1–9), in the middle (trials 10–18), or late (trials 19–27) in the experiment ses-
sion. The order of the groups was counterbalanced between participants and the order of the compar-
isons within each group was randomized for each participant.

2.1.3. Expected strategy performance
To get a sense of the performance that can be expected in this task, Table 1 displays the average

posterior of the most likely graph after making a single intervention with IG, PTS, or a random strat-
egy. Note the possible range of values is .5 (complete uncertainty) to 1 (complete certainty). Assuming
a learner makes just this one intervention, higher values would also correspond to higher accuracy in
choosing the underlying graph. When interventions with the highest IG or PTS value (arg max) are
chosen, the table shows that IG leads to higher average posterior beliefs. The same holds for proba-
bilistic decisions with low decision noise, s (from Eq. (5)). This is not surprising, given that IG aims
Fig. 3. All 27 problem types used in the experiment. Circles represent nodes in the causal graph (i.e., elements of the circuit
board) and arrows indicate causal links (i.e., an arrow pointing from one node to another indicates that the first node can cause
the other node to activate). Each numbered comparison represents a problem for which people were asked to decide between
two causal hypotheses. Comparisons highlighted with a gray box in-principle distinguish the IG and PTS models.
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to discriminate between hypotheses whereas PTS does not. Nevertheless, PTS and even a random
strategy yield above chance performance (average posterior beliefs of .8 or higher).

2.2. Procedure

2.2.1. Instructions and training
Participants were asked to imagine working in a computer chip factory. Their job was to help test

and identify a range of computer chips that were mixed up during an accident in the factory. Each chip
was described as coming from one of two possible areas of the factory, corresponding to two possible
structure hypotheses.

Participants received detailed instructions on the task, including the causal strengths of the links,
the noisy-or integration function in common effect structures, and the rules for obtaining the bonus
payment. They also performed a minimum of ten interventions on a simple two-node chip with
one causal link to get some experience with making interventions and experiencing the probabilistic
nature of the links. After the instructions and practice phase, they had to pass a short quiz before being
allowed to proceed to the main task. If they failed the quiz, they had to view all instructions again, and
re-take the quiz until they passed.

2.2.2. Intervention phase
See Fig. 2 for a visualization of the intervention phase. A short video of the intervention phase can

be found here: http://gureckislab.org/annacoenen/videos/ChipTask_Exp1.mp4. Participants tested 27
chips corresponding to the 27 comparisons in Fig. 3. They were told that each chip was of one of
two types, which were presented using arrow diagrams. These diagrams remained at the top of the
screen the entire trial. To test a chip, participants could make as many interventions as they wished,
but had to make at least one.

A trial began with all components of the chip switched off (red). Participants could then intervene
on one component by clicking on it and thereby turning it on (green). When a component was acti-
vated, a black circle appeared around it to indicate the intervention. After a short (500 ms) delay an
animated white ring appeared around all other components to indicate that they were updated as a
consequence of the intervention. Components that were turned on by the intervention changed their
color to green, all other components remained red. All components had to be reset to their original
state (off) using a button press before another intervention could be made.

When participants felt that they had identified the chip type, they proceeded by clicking a button.
The two arrow diagrams were then magnified on the screen, and participants indicated their choice by
clicking on one of them. Participants rated their confidence about this decision using a continuous sli-
der that ranged from ‘‘not at all confident’’ to ‘‘very confident’’. They received feedback on whether
they chose the correct structure.

2.2.3. Incentive structure
To ensure that participants chose interventions carefully, they were told they could win a bonus of

up to $1 from one randomly chosen trial at the end of the experiment. The bonus was only paid if they
chose the correct structure on that trial, and it was further reduced by $0.10 for every additional inter-
vention they made after the first one (which was obligatory). Thus, participants were incentivized to
respond accurately while using only a small number of interventions.

2.3. Results

2.3.1. Graph choices
Participants were highly accurate in identifying the causal graphs. The percentage of correct

choices averaged across individuals was 87% (SD = 0.14, MD = 92%). This accuracy was achieved with
only a small number of interventions. On average, participants made 1.56 (SD = 0.59) interventions
during a single chip test, and on most trials stopped after only one intervention. The relative simplicity
of the task (only two hypotheses and no background causes) and cost structure (that rewarded fewer
interventions) probably contributed to this efficiency.

http://gureckislab.org/annacoenen/videos/ChipTask_Exp1.mp4
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Participants’ confidence ratings mirrored their choices, with higher confidence ratings on correct
(M = 80.22), versus incorrect trials (M = 72.62), t(89) = 3.66, p < .001.

2.3.2. Learning with experience
To assess whether participants’ accuracy improved over trials and with more feedback, we com-

pared their accuracy on each of the three groups of nine comparisons and for each group position.
Average accuracy on the first, second, and third group was 0.84, 0.87, and 0.89, respectively. In a logis-
tic regression on accuracy with predictors for each participant, group, and group position, the effect of
group position was significant, v2(2) = 11.7 p < 0.05. However, overall the magnitude of improvement
was relatively small.

2.3.3. Interventions
Our main question was how people decide which node(s) to intervene on given a pair of hypothe-

ses. Due to the low total number of interventions (the modal number was one), we focus our analysis
on the first intervention. This also avoids the complexities involved in accounting for how learners’
interventions are affected by the outcome of earlier interventions.

Our first analysis considered choice patterns for each of the 27 problem types, that is, the propor-
tion of individuals who chose each node on their first (and often only) intervention. Our aim was to
present not only frequencies but also the variability in those frequencies across subjects, in order to
characterize other choice distributions that might plausibly be observed if the same experiment were
run again. Because the choice data are multinomial, there does not exist an easily interpretable mea-
sure of variability, such as a standard deviation for normally distributed data. We therefore used a
bootstrapping method to generate other plausible choice patterns. For each of the 27 problem types,
we repeatedly re-sampled (with replacement) participants’ choices. These bootstrapped samples give
an estimate of the range of other outcomes that we might expect if the experiment was repeated. The
distribution of the samples is presented in a simplex plot for each problem. An example is shown as
the blue cloud of dots in Fig. 4 (bottom left panel) and in subsequent figures. The white dot in the mid-
dle of the blue samples corresponds to the actual proportions with which any given node was chosen
by participants in the experiment for the given problem. In this example the majority of participants
selected n1, with the remaining individuals split roughly evenly between n2 and n3. Fig. 5 shows the
bootstrapped choice data for all problem types.

In the following sections, we compare these empirical data to the predictions of IG, PTS, and a com-
bination of the two, using a method of posterior predictive model assessment. Table 2, which will be
revisited below, additionally shows more standard measures of model assessment, such as log-likeli-
hood and BIC, along with the best fitting estimates of model parameters.

2.3.4. Information gain
To evaluate IG’s ability to account for the data, we derived its predictions for each of the 27 prob-

lems according to Eq. (3). We assumed that participants had a uniform prior belief over the two struc-
tures before making an intervention (consistent with the instructions). When fitting the model, it will
appear to account for some problems better than others. To ensure that model-fit discrepancies cannot
be explained by chance variation, we fit IG using a hierarchical Bayesian model and then used a
method of posterior-predictive model assessment (Gelman et al., 1996), as mentioned above.

The model includes a single free parameter s in the softmax decision rule (see Eq. (5)), which
increases with the degree to which behavior resembles guessing rather than choosing the option with
the highest expected IG. Each participant’s s value was sampled from a population-level gamma dis-
tribution with two parameters, a (shape) and b (rate). A gamma distribution was chosen because s can
range from 0 to infinity. The values of a and b as well as each participants’ s value were fitted using the
hierarchical Bayesian model summarized in Fig. 16 in Appendix A.

To obtain predictions from this model we then repeatedly sampled from the posterior-predictive
distribution of a and b to simulate different populations of subjects. For each population, we then gen-
erated 105 (N in the experiment) values of s and used these to generate choice data for each problem.
These simulated choice distributions are shown alongside the bootstrapped empirical data as red dots



Fig. 4. How to interpret simplex plots that appear later in the paper. Top: The corners of the space represent each of the three
possible intervention choices on any trial. Points within the simplex correspond to the probabilities, PðaÞ, of intervening on each
of the three nodes in a causal graph averaged over participants. Any possible decision preference across the three nodes can be
summarized as a unique point in this space. The middle of the simplex is the point of indifference between the three choice
options. A point closer to any corner of the simplex represents a strong preference for a particular node. Two examples are
plotted in the space corresponding to the middle point (indifference between the three options) and indifference between only
n2 and n3. Bottom: The left panel shows an example of bootstrapped empirical data. The white dot in the center of the cloud
represents the actual choice proportions made by participants in the experiment. The blue cloud of points (lighter color when
viewed in grayscale) are bootstrapped samples showing the uncertainty in this empirical estimate (see text). The red cloud of
points (darker color in grayscale) in the right panel represent a range of model predictions (also explained in the text). If the
model predictions (red cloud) overlap with the blue cloud (empirical data) the model provides a credible account of the
empirical data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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in Fig. 5. In sum, each red dot represents the choice proportions for a simulated sample of learners
(drawn from a simulated population), of the same size as our experiment population. Rather than a
single point, the model predictions reflect a distribution of possible outcomes given plausible assump-
tions about how parameters might vary in the population. One major advantage of visualizing the
model predictions in this manner is that it allows us to assess the fit of a single model and to decide
whether it offers a credible fit to the data. Comparing the distribution of bootstrapped empirical data
(blue dots) and model simulations (red dots) invites a comparison of the two through visual inspec-
tion. When the red dots mostly overlap with the blue dots, the model provides a credible account of
people’s choices. This comparison is analogous to comparing and finding the overlap of two confidence
intervals of normally distributed data, while staying true to the multinomial data of this experiment.

As can be seen from Fig. 5, there is a large overlap of the model and data in a number of problem
types (such as Problems 1, 3, 6, 10 and 11). However, there also exist multiple problems for which the
model and the data differ considerably (like Problems 4, 12, 14, 16, 21 and 27). This analysis shows
that the IG model does not fully explain how participants chose their causal interventions in this task,
even after taking into account the variability of the data and a range of possible model predictions.

To examine whether people’s propensity to use IG changed with experience, we also compared the
log likelihood of the IG model fit to each participant during the early, middle, and late comparisons
phases of the experiment. Using a repeated measures ANOVA, we found no significant main effect
of time on the log likelihood as a function of block, F(2,2726) = 2.207, p > 0.11. The effect did approach
significance, however, so there may exist a trend towards higher IG use over time.

2.3.5. Other discriminatory strategies
Although we explored a range of possible modifications to the IG strategy as well as one alternative

discriminatory model (probability gain; Baron, 1985; Nelson, 2005, for details see Appendix B), our
results suggest that any discriminatory strategy would have difficulty explaining people’s choices
for certain problem types in this experiment. The reason is that participants frequently made



Fig. 5. Intervention choices and predictions of the IG model by problem type. The corners of each triangle correspond to nodes
in the causal graph that participants intervened on (see Fig. 4). White dots indicate the actual choice frequencies. Bootstrapped
samples of these choices are shown in blue (lighter color when viewed in grayscale). Samples from the IG model’s posterior are
shown in red (darker in grayscale). Where the two point clouds do not overlap (e.g. in Problems 4, 21, or 27), it is very unlikely
that the observed data could have been generated by participants adhering to IG. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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interventions that tend to lead to the same outcome under both hypotheses, which thus failed to dis-
criminate between them. Consider for example Problem 21, shown in the left panel of Fig. 6: IG pre-
dicts that learners should avoid intervening on n1, which is the root of both chain graphs, because it
will probably lead to the same outcome (all nodes ON), irrespective of which hypothesis is true. Yet,
most participants chose to intervene on n1. Problem 14 (right panel in Fig. 6) provides another exam-
ple: In this problem, intervening on n1 will always lead to the same outcome for both hypotheses (it
has zero EIG), yet participants intervened on this node frequently. Although less pronounced than in



Table 2
Overview of the models fit with maximum-likelihood estimation using the multinomial likelihood of participants’ choice
distribution on each of the 27 problems. To calculate BIC, N was the number of interventions (27) times the number of participants
(105). The combined model far outperforms the two individual models, even taking into account the additional parameter, h.

Model Log likelihood BIC R2 s h

Random �880 1760 – –
IG �398 804 .66 .37 –
PTS �375 758 .61 .30 –
Combined �221 446 .86 .22 .40

Fig. 6. Example Problems 21 (left panel) and 14 (right panel): PðaÞ corresponds to participants’ average choice probability for
each node. Model predictions are normalized to sum to 1. In both problem types, participants deviated from the IG strategy with
a higher than predicted preference for the root node n1 despite the fact that this intervention will likely lead to a non-
discriminating outcome. This divergence from IG is more pronounced in Problem 21 (left), but perhaps more surprising in
Problem 14, because intervening on n1 has no informational value whatsoever, yet 24% of participants chose this intervention.
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Problem 21, this finding is unlikely to have arisen by chance from a population of IG users, as indicated
by the barely overlapping model and empirical distributions for Problem 14 shown in Fig. 5.

In summary, with an experiment designed to make it particularly easy to use a discriminatory
strategy like IG (at least relative to past work), participants’ choices deviated from the IG model on
a number of problem types.

2.3.6. Positive testing strategy
We next evaluated if participants’ intervention decisions followed a PTS strategy. We calculated the

predictions of PTS using Eq. (6). Fig. 7 shows bootstrapped samples (blue dots) from participants’
actual choices (white dot) compared to samples from the posterior of the PTS model (red dots).
Predictive samples were obtained in the same way as for IG.

PTS also fits the data reasonably well on some problems, but diverges on others. Crucially, the
model fit the data better on many problems which were poorly predicted by IG, for example
Problems 21, 26 and 27. To illustrate this point more generally, Fig. 8 shows the relationship between
the log likelihood of the empirical data given the IG model for each problem and the rank correlation
of the preference order of IG and PTS over the three nodes (i.e. interventions) on each problem type. It



Fig. 7. Intervention choices and predictions of the PTS model, by problem type. Again, a lack of overlap of the bootstrapped data
(blue) and model predictions (red), indicate that the model is highly unlikely to have generated the data, for example in
Problems 14, 22 and 25. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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shows that when the models make very different predictions (low correlation), IG does not fit the data
well, r(25) = .68, p < 0.001. This pattern suggests that deviations from IG on some problem types are
not just due to random variation in the data. Instead, each model particularly suffers on problems
where the other models make very different predictions.
2.3.7. Other non-discriminatory strategies
In addition to the above PTS model, we fit a range of alternative non-discriminatory models to the

data. For example, we considered if participants’ choices could be explained by a desire to merely turn
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Fig. 8. Relationship between the goodness-of-fit of IG (A) and PTS (B) and agreement of the two models (Kendall’s s rank
correlation), by problem type. Both models fit better when their predictions are in line with each other (high rank correlation).
When the two models disagree, they fit less well, indicating that participants’ divergence from each model is not purely due to
random noise, but that the two strategies might, in fact, be complementary to each other.
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on as many nodes as possible. No alternative we tested explained the data better than PTS and none of
them complemented the predictions of IG better than PTS. For more details on these alternative mod-
els, see Appendix B.
2.3.8. A combined model of intervention choice
To test the possibility that participants are guided by both types of reasoning, we fit a third model

which represents a linear combination of IG and PTS with a mixture weight h for the two strategies. To
compute the likelihood of an intervention in this model, the softmax rule in Eq. (5) takes weighted
sums of the scores from IG and PTS, where the mixture weight h can take values between 0 and 1.
When h ¼ 1 the strategy reduces to IG, when h ¼ 0, it reduces to PTS. Both h and s were fit individually
for each subject, as shown in the Bayesian hierarchical model in Fig. 9. The mixture weight h was fit
using a Beta distribution that was reparameterized by its mean l and standard deviation j. Fig. 10
shows posterior samples of this model compared to the data in the same way as for the two individual
models. The combined model shows a much larger overlap of model predictions with the data on most
problem types compared to the individual models. In fact, none of the empirical data from individual
problems appears implausible in relation to the model (i.e., the red and blue distributions largely over-
lap) although, to be fair there is less overlap in Problems 18, 19, and 21.
Fig. 9. Hierarchical Bayesian model of the combination of IG and PTS. Each trial, j, corresponds to one problem type for which
each participant chose one intervention, y. IGj And PTSj are three-vectors with model scores for the three possible intervention
on problem j. pij is a three-vector of choice probabilities for each intervention. si and hi are fit for each participant and capture
the noisiness of their choices (higher s indicates behavior closer to guessing), and the strategy weight (high h indicates behavior
in line with IG), respectively. Hyperparameters, a; b;l, and j capture the population-level distributions of these parameters.



118 A. Coenen et al. / Cognitive Psychology 79 (2015) 102–133
To ensure that a similar conclusion could have been derived without the use of a complex hierar-
chical modeling framework, we also compared the fit of all three models using maximum-likelihood
estimation, without fitting individual participants’ parameter values (that is, using a single s param-
eter in the two individual models, and one s and h parameter in the combined model). Table 2 shows
the log likelihoods of the IG, PTS, and combined models (with one s parameter in the individual mod-
els, and s and h in the combined), along with the best-fitting parameter values. Again, the combined
model leads to a large improvement of the model fit compared to the individual models. This is also
implicated by the best-fitting value of s, which is lower in the combined model, showing that partic-
ipants’ choices were closer aligned with the model.
Fig. 10. Intervention choices and predictions of a combined model of IG and PTS, by problem type. Although there are some
borderline cases (e.g. Problems 18 and 27), the overlap of the model predictions (red) and the bootstrapped data (blue) has
increased compared to the individual models. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Based on the clear superiority of the combined model, in the following analyses we conduct addi-
tional tests of the hypothesis that people are driven by both discriminatory and confirmatory aspects
of intervention selection. We examine whether the agreement or conflict between the strategies
affects how long it took to plan an intervention and how participants differed in the degree to which
they used one strategy compared to the other.
2.3.9. Response time
If people are influenced by both strategies, then cases where the two strategies disagree become

particularly interesting, because learners potentially had to resolve the conflict before making a deci-
sion. We tested the possibility that interventions took longer when IG and PTS make different predic-
tions. For each problem type, we calculated the agreement of the two models using the Kendall s rank
correlation coefficient of their prediction for each node. The relationship between model agreement
and the median response time before making an intervention in each problem is shown in Fig. 11.
As predicted, the correlation was negative, r(25) = �0.58, p < 0.005, such that participants responded
more quickly when the two models agreed and more slowly when they disagreed.

Using linear regression, we also controlled for two other nuisance variables that could have medi-
ated this relationship between model agreement and RT. First, since the problem types differed in
complexity (graphs could have either one or two links), we included the total number of links of both
hypothesized graphs in the regression analysis. Second, participants’ general uncertainty about which
intervention to choose, irrespective of whether this uncertainty arises from strategy conflict, might
have increased RTs. We therefore also included the Shannon entropy over the preference scores for
the three nodes in each problem, as predicted by the combined model (using the best-fitting param-
eter values of h and s at the population level). Even controlling for these variables, the negative rela-
tionship between RT and model agreement survived, t(23) = �3.465, p < 0.05. Additionally, the total
number of links increased response time, t(23) = 3.623, p < 0.01. Uncertainty was not a significant pre-
dictor, t(23) = �1.559, p > 0.10.

In summary, we find evidence that strategy conflict is correlated with response time, which pro-
vides indirect evidence that participants had to resolve mental conflict between the two strategies.
2.3.10. Individual variability
The h parameter in the combined model provides an estimate of participants’ preferred strategy

(h ¼ 0 means perfect PTS, h ¼ 1 means perfect IG). Fig. 12A shows a histogram of the best-fitting val-
ues of h for each participant based on maximum-likelihood estimation. Interestingly, rather than
dividing into two groups, many participants fall on a continuum between the two strategies. Thus,
behavior does not only resemble a strategy mixture in the aggregate; it does so at the individual level,
as well.

To get a sense of how closely the strategy types matched individual behavior, Fig. 12B shows the
relationship between the maximum likelihood values of h and s for each participant. Recall that high
Fig. 11. Median response time before making an intervention for each problem type used in Experiment 1, by agreement of IG
and PTS (Kendall’s s rank correlation). When the models make different predictions (low rank correlation), RTs were longer,
indicating that those problems made it more difficult for participants to choose an intervention.
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Fig. 12. Panel A: Histogram of maximum likelihood estimates of h in Experiment 1. When h ¼ 1, a participant’s strategy is best
fit by a pure IG model, when h ¼ 0, it is best captured by PTS alone. Panel B: Relationship of the ML estimates of h and s by
participant. Note that s values greater than 3 were set equal to 3 for the purpose of this plot. This setting already starts
resembling a pure guessing strategy. For example, for values [.1, .9,0.], the softmax function using s ¼ 3 yields choice
probabilities [.31, .40, .29]. Panels C and D: Relationship between best-fitting h of each participant and their response time and
accuracy.
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levels of s reflect increased guessing. There is no significant trade-off between the two variables,
r(103) = �0.07, p > 0.05, suggesting that particular fitted values of h do not reflect increased random
choosing.

Next, we asked whether and how a participant’s intervention strategy, measured by h, was related
to other variables. Specifically we wanted to know if it correlated with response time and overall
accuracy.

We expected that the IG strategy, which requires comparison between hypotheses and simulation
of outcomes from each intervention, would be associated with longer RTs than PTS, which only
requires finding nodes with a large proportion of children in either hypothesis. Fig. 12C shows the
relationship between h and median RT per participant. As expected, participants whose behavior
was better accounted for by IG took significantly longer to choose interventions, r(103) = .23, p < 0.05.

We also considered the relationship between strategy use and accuracy. From model simulations
(see Table 1), we expect learners choosing interventions with IG to be more likely to choose the correct
structure for reasonably low values of s. Fig. 12D shows the relationship between h and mean accu-
racy, which is positive as expected. We also expected the degree to which a participant behaved ran-
domly, measured by s, to have a negative impact on the quality of information and thus accuracy. We
therefore calculated the correlation between h and residual accuracy after accounting for each partic-
ipant’s value of s, which not surprisingly remains positive, r(102) = 0.44, p < 0.001.
2.4. Discussion

Three important observations emerged from our first study. First, the results show that neither the
IG model nor PTS alone could predict causal intervention decisions across a range of structure learning
problems. This finding is at odds with single-strategy theories that have so far dominated the litera-
ture on causal intervention learning.

Second, a linear combination of the two strategies greatly improved the model fit, suggesting that
both discriminatory and confirmatory aspects can play into people’s interventions. The success of the
combined model also tallies with recent work on information search that has demonstrated mixtures
of strategy use, albeit in non-causal environments (Markant & Gureckis, 2012b). Although use of a
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confirmatory strategy may be unsurprising in light of the literature on rule learning (e.g., Klayman &
Ha, 1987), this article is the first to define what positive testing of causal rules consists of and establish
that learners in fact conduct such tests.

Third, Experiment 1 found large individual variability in how well learners were described by the
two models and, moreover, that most individuals were influenced by both strategies. That is, rather
than distinct groups of positive testers and discriminatory learners most participants behaved as if
they used a mixture of both. One open question that remained from this first experiment is what
guides the degree to which participants use one strategy or another. One possibility is that the ten-
dency to use PTS reflects a stable bias in how people approach such tasks that may only be overridden
with extensive instruction.

However, it is worth noting that in Experiment 1, even if participants used PTS to choose interven-
tions, they could still in principle learn the correct structure in most problem types with only few
interventions. That is, using PTS only incurred a small cost in accuracy compared to IG (similar to a
‘‘flat-maximum’’ phenomenon in economic decisions where different strategies all perform relatively
similarly). Accordingly, one alternative hypothesis is that learners only adopt a more effortful IG strat-
egy when its benefits exceed the cost of one that is more cognitively frugal. One might speculate that
everyday reasoning problems rarely necessitate the additional effort expended to engaging in discrim-
inatory reasoning. However, when faced with those that do, people may adapt their strategies accord-
ingly. Such a cost-benefit perspective on strategy selection is often adopted in other areas of the
cognitive and decision sciences (Payne, Bettman, & Johnson, 1988) but has been less prominent in
the literature on causal learning.

We now directly explore these issues by manipulating factors that we hypothesized might alter
participants’ intervention strategies either to favor IG (Experiment 2) or PTS (Experiment 3).
3. Experiment 2

Experiment 2 tests the hypothesis that people will adopt more discriminatory strategies when the
cost of using a confirmatory strategy is greater than it was in Experiment 1. We essentially repeated
the design from Experiment 1 with an additional between-subjects manipulation. Participants first
completed a set of intervention problems that were designed to make PTS a lot less effective than
IG (PTS� condition) or equally effective (PTS= condition). PTS can be made less effective by choosing
problems for which it yields non-diagnostic outcomes. In other words, the PTS� condition presents an
environment in which the benefits of using IG may outweigh the cognitive effort required to discrim-
inate between hypotheses. In the PTS= condition both strategies result in diagnostic outcomes, so
there is no clear incentive to choose IG over PTS.

Both groups of participants were then tested on a set of transfer problems taken from Experiment
1. If strategy use is a stable trait or bias (or if our cost manipulation is ineffective), no difference
between the conditions should be found. But if strategy use is adaptive, transfer-phase interventions
will be more in line with IG in the PTS� condition. Apart from demonstrating adaptation, the latter
result would also provide corroborating evidence for our interpretation of Experiment 1 by showing
that interventions we claim reflect IG and PTS respond to an experimental manipulation in the
expected way.

3.1. Method

3.1.1. Participants
We recruited 122 participants via Amazon Mechanical Turk. Compensation and incentive structure

were the same as in Experiment 1. Participants were randomly assigned to either the PTS� (N = 62) or
PTS= (N = 60) condition.

3.1.2. Stimuli and materials
Participants completed a total of 40 problems. The first half of the experiment presented 20 prob-

lems consisting of pairs of four-node causal networks (see Fig. 13). In the PTS� condition, problems



Fig. 13. New problem types used in the two conditions of Experiment 2. The problems in the PTS� group were designed to yield
particularly non-informative outcomes from interventions chosen with PTS, that is, by intervening on root nodes the outcome
would often be ambiguous regarding the true underlying graph. This is not the case for problems in the PTS= group, in which
PTS interventions are highly informative.
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were designed such that PTS interventions would often lead to outcomes that do not discriminate the
hypotheses. A simulation of an optimal learner choosing interventions on these problems resulted in
only 62% accuracy after one intervention using PTS compared to 91% using IG (assuming the learner
always chooses the option with the highest IG/PTS score on each trial). In the PTS= condition, simu-
lated accuracy of PTS after one intervention was 93%, compared to 95% with IG. To compare, in
Experiment 1 PTS would have led to accuracy of 85% and IG to 92% (see also Table 1).

Participants were then tested on a subset of 20 problems used in Experiment 1. This transfer set
included problems for which IG and PTS made different predictions, as judged by the rank order of
predicted preferences for each node. They are highlighted with a gray box in Fig. 3. We only used a
subset of problems from Experiment 1 to prevent the experiment getting too long without sacrificing
the discriminability of the strategies.
3.1.3. Procedure
The procedure was the same as in Experiment 1, except that participants were first given the new

four-node problems followed by the transfer problems, both in randomized order. There was no dif-
ference in the procedure between the two experimental conditions besides the set of novel problems
and no indicator of the transition between phases other than the transition from four- to three-node
problems. Another short video showing a problem with two four-node graphs can be found here:
http://gureckislab.org/annacoenen/videos/ChipTask_Exp2.mp4.
3.2. Results

3.2.1. Accuracy
Accuracy on the 20 new four-node problems was lower for PTS� participants (80% accurate) than

PTS= participants (92% accurate). This difference was unsurprising given that the expected accuracy
from optimal learner simulations was higher on PTS= problems for both strategies. Additionally, par-
ticipants who learned to use IG in the PTS� condition may have used PTS on early trials, leading to
particularly low accuracy. Indeed there is some evidence (approaching significance) that accuracy
increased with each trial in the PTS� condition (R2 ¼ 0:18; Fð1;18Þ ¼ 3:97; p ¼ 0:061), suggesting
the presence of strategy learning. We do not find the same relationship in the PTS= condition
(R2 ¼ 0:06; Fð1;18Þ ¼ 1:22; p ¼ 0:283).

On the 20 transfer set problems both groups achieved an average accuracy of 88% (SD ¼ 0:13 and
SD ¼ 0:12 in PTS� and PTS=, respectively). That is, accuracy alone indicated no effect of the training
manipulation. Recall, however, that both IG and PTS can lead to relatively high accuracy on these prob-
lems (91% and 85%, respectively; see Table 1). Thus, it is possible that the underlying strategy profiles
in the two conditions were different even with similar performance levels. Also note that there are
other drivers of accuracy, such as decision noise during interventions, the number of interventions

http://gureckislab.org/annacoenen/videos/ChipTask_Exp2.mp4


A B C

Fig. 14. (A) Top plot shows histograms of best-fitting h parameters in both conditions of Experiment 2. High h indicates a better
match of the data to IG compared to PTS. Bottom plot shows the relationship between h and s. (B) Distribution of samples of the
l parameter (population mean of h), fit to data in Experiment 1 and both conditions of Experiment 2. (C) Difference between
samples of l in PTS� and PTS= conditions of Experiment 2.
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taken, and a participants’ ability to correctly update their beliefs in light of an intervention outcome,
which might have further diminished the possibility to detect an effect for the two groups.
3.2.2. Intervention strategy
To investigate whether the training manipulation affected participants’ transfer strategy, we first

determined the best-fitting mixture parameters h for each participant using maximum-likelihood
estimation. To make the two conditions comparable, we fit these parameters only to the 20 transfer
problems. The distribution of best-fitting h parameters in Experiment 2 is shown in Fig. 14A. In the
PTS� condition h values fall closer to IG (i.e., h ¼ 1:0), compared to PTS=.

To assess whether, at the population level, this new distribution of strategy weights was different
between the two conditions, and to compare the results to Experiment 1, we also fit the full hierarchi-
cal Bayesian model (see Fig. 9). Fig. 14B shows histograms of MCMC samples of the l parameter from
this model for the two new conditions and Experiment 1, calculated based on the transfer problems
common to all three experimental conditions. These histograms approximate the posterior distribu-
tion of l, which represents the population mean of h. There are a number of advantages of using this
population parameter,3 rather than simply taking the mean of the individual maximum-likelihood val-
ues of h and comparing them across manipulations. For example, the width of the posterior distribution
(approximated by MCMC samples) indicates how confident we should be about a parameter value in the
population.

Fig. 14B shows that l is shifted considerably towards higher IG-use in the PTS� condition of
Experiment 2, compared to PTS= and Experiment 1. Another way of testing whether this difference
is credible involves determining the 95% Highest Density Interval (HDI) of the distribution of the dif-
ference in l in the PTS� and PTS= conditions. To compute this difference, we took 10,000 samples
from each model, paired the samples randomly, and computed lPTS¼ � lPTS� (method is similar to
Kruschke Kruschke, 2013). The resulting distribution is shown in Fig. 14C. Since the 95% HDI of this
distribution of lPTS¼ � lPTS� does not include 0, we can be confident to conclude that there is a cred-
ible difference at the population-level in the degree to which participants used IG in these two
conditions.
3 Besides those already mentioned, one advantage of fitting all parameters together in the same model is that the estimate of l is
automatically influenced more strongly by participants with low values of s (i.e. those whose behavior did not resemble guessing).
This is important because participants might have extreme values of h when fit using MLE (close to 0 or 1), but still mostly choose
randomly (high s). Their data will have a smaller effect on the parameter estimates of h and l in the hierarchical model.
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3.3. Discussion

This experiment found that participants were indeed more prone to behave in a discriminatory
fashion after encountering problems for which PTS led to a lower expected payoff (PTS�) than ones
for which it did not (PTS=). Importantly, this difference was found on the same set of transfer problems
in both conditions. That learners experience with one problem set carried over to another suggests
that strategy use is not a stable trait or bias but rather can adapt to different choice environments.
As mentioned, the finding that IG/PTS use increased/decreased in the expected way to the training
manipulation also corroborates our claim for the presence of those strategies in Experiment 1.
4. Experiment 3

Experiment 2 showed that people’s intervention strategy can shift towards IG after experiencing a
modest number of situations that disincentive positive testing. To further test the adaptive nature of
intervention strategies we next consider a manipulation that might encourage the use of PTS and
thereby lead to the opposite pattern.

Since we found that the tendency toward IG use was associated with longer response times (see
Experiment 1), one factor that might guide strategy selection is the time available to decide to inter-
vene. If the IG strategy, or discriminatory strategies in general, are more cognitively effortful they may
take longer to compute, making PTS more attractive when time is limited or costly. In Experiment 3
we put participants under time pressure by adding a cost to the time taken to intervene.

We tested three groups in which the time to make an intervention was limited to 60, 8, or 4 s.
Participants were incentivized to respond quickly since their potential bonus decreased as a linear
function of time. We tested two short time windows (4 s and 8 s) to ensure that at least one of them
would exert time pressure without inducing random guessing. We tested the longer time window
(60 s) to test whether less time pressure would have a weaker effect on strategy use than the two
extreme conditions.

If participants take their computational capacities into account in an adaptive fashion, and if PTS is
easier to compute than IG, then we expected the shorter response deadlines to increase the use of PTS
(i.e. result in overall lower estimates of h and l). On the other hand, if strategy selection is not adap-
tive, we expected that they would only increase the noisiness of choices (i.e. an increase in s).

4.1. Method

4.1.1. Participants
We recruited 295 participants via Amazon Mechanical Turk.4 Participants were randomly assigned

to the three conditions (N = 98, N = 98, and N = 99 in the 4 s, 8 s, and 60 s conditions, respectively). They
were paid the same pre-bonus amount as in Experiments 1 and 2 ($2), but the rules for the bonus pay-
ment differed, as explained below.

4.1.2. Stimuli and materials
Participants completed the same 27 problems used in Experiment 1. The screen was set up similar

to previous experiments, but included an hourglass on the right hand side (replacing the yellow status
bar used in Experiments 1 and 2, see Fig. 2).

4.1.3. Procedure
A short video of an intervention trial under time pressure (from the 8 s condition) can be found

here: http://gureckislab.org/annacoenen/videos/ChipTask_Exp3.mp4. The procedure was the same
as in Experiments 1 and 2, with a few exceptions.
4 We decided to collect more data (�100 participants per condition) in this experiment compared to Experiment 2, because we
expected the timing manipulation to potentially make the choice data noisier. Consequently, we leaned towards a similar sample
size as in Experiment 1.

http://gureckislab.org/annacoenen/videos/ChipTask_Exp3.mp4


Table 3
RT percentiles in the three conditions of Experiment 3. Note that the difference between the 8 s and 60 s conditions is more
pronounced than between the 4 s and 8 s conditions.

Condition 5th 25th 50th 75th 95th

4 s 1401 1772 2204 2866 5141
8 s 1510 1974 2574 3530 6382
60 s 1874 2587 3561 5050 8850
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First, the bonus that could be gained on each intervention trial decreased with the time participants
took to make it. Participants saw an hourglass on the right hand side of each chip they were testing.
The ‘‘sand’’ in the hourglass started running out as soon as the chip appeared and stopped once an
intervention was made. In the three experimental conditions, the sand ran out after either 60 s, 8 s,
or 4 s.

Second, the potential bonus from each trial was computed by multiplying the maximum amount
($1) with the proportion of time that had elapsed when a participant made an intervention (i.e., the
proportion of sand left in the top half of the hourglass). As before, the bonus was also conditional
on selecting the correct chip diagram. Participants had to make an intervention and choose a chip dia-
gram even when the time had expired (and so their potential bonus was $0).

Third, in contrast to the previous experiments, participants could only make one intervention on
every chip they tested in order to avoid developing an additional tradeoff where repeated interven-
tions were penalized.
4.2. Results

The following analyses excluded trials in which participants ran out of time before intervening,
because after reaching a bonus of $0 there remains no incentive to decide quickly. As a consequence,
four participants were completely excluded from the analyses (one in the 8 s condition, and three in
the 4 s condition).5 Note that the remaining 93 participants in the 4 s condition exceeded the time limit
on average on only 1.3 trials (out of 27).
4.2.1. Timing manipulation
There was a main effect of timing condition on participants’ average response time,

Fð2;290Þ ¼ 28:65; p < 0:001. The average response times were 2637 ms, 3098 ms, and 4327 ms, in
the 4 s, 8 s, and 60 s conditions, respectively (for percentiles, see Table 3). The average increase in
response time from the 8 s to the 60 s conditions was more than twice as large than the increase from
the 4 s to 8 s conditions.
4.2.2. Intervention choices
To compare strategies in the three conditions, we again found the best-fitting parameters for s and

h, shown in Fig. 15A. We also fit the full hierarchical Bayesian model from Fig. 9 to extract the popu-
lation-level parameter l. Fig. 15B shows the distribution of samples of l for the three new conditions,
as well as Experiment 1. The plot shows that in all three time pressure conditions participants’ behav-
ior was better described PTS, compared to Experiment 1. Furthermore, the two fastest conditions (8 s
and 4 s) showed a stronger PTS tendency than the 60 s condition indicating that participants were sen-
sitive to not only the presence of, but also the amount of time pressure. The difference between 4 s and
8 s is less pronounced, consistent with the smaller difference in RTs in those conditions.

Importantly, this change in behavior towards PTS under time pressure was not driven by an
increase in noisy choice behavior (i.e. random guessing). On the contrary, in the two fast conditions
(4 s and 8 s), participants with high IG scores (high h) actually looked noisier than those using PTS
5 Note that none of the key results reported below depend on the exclusion of these participants. But since they strictly speaking
should not have been influenced by the timing manipulation in the way we intended, they were excluded.



Fig. 15. (A) Top plot shows histograms of best-fitting mixture weight h by condition of Experiment 3. The bottom shows the
relationship between ML estimates of h and s (high values indicate choices that resemble guessing). (B) Histogram of samples of
l parameter from the hierarchical model in Fig. 9 for all conditions of Experiment 3, as well as Experiment 1.
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(see Fig. 15, panel A). Thus, although the histogram of ML estimates of h at the top of panel A shows
that some participants were fit as extreme IG users, many of them were mostly choosing randomly.

4.3. Discussion

As expected, participants responded more quickly given shorter deadlines and conducted more
positive tests as a consequence. These results provide further support for the flexibility of people’s
intervention strategies and show that the shift towards IG that was observed in Experiment 2 is not
the only possible direction of strategy change. They also support the hypothesis that PTS is cognitively
easier to use than discriminatory strategies.
5. General discussion

This article asked what strategies people use when planning causal interventions to test their
hypotheses about the world. We considered two strategies. Information gain (IG) has been proposed
as both as a normative account of information search (Murphy, 2001; Nelson, 2005; Tong & Koller,
2001), and a psychological model of causal learning via interventions (Steyvers et al., 2003).
Positive test strategies (PTS), on the other hand, have been shown to underlie hypothesis testing
behavior in a variety of domains, including rule learning and logical reasoning (Klayman & Ha,
1987; Jones & Sugden, 2001; Wason, 1960).

To summarize our main findings, Experiment 1 found that people did not behave as predicted by
the IG model, even though our task was designed to minimize the cost of using a discriminatory strat-
egy. Instead, the data were best explained by a combined model that describes behavior as a mixture of
discriminatory (IG) and confirmatory (PTS) hypothesis testing. Two experimental manipulations then
demonstrated that people’s strategies change in response to other variables in the task. Experiment 2
showed that participants’ tests became more discriminatory after they were first exposed to a range of
problems with a low expected payoff of PTS. In other words, without otherwise changing the instruc-
tions of the task, participants behaved more in line with IG when previous experience showed them
that PTS was inferior. Experiment 3 demonstrated the opposite pattern. When put under time pres-
sure, participants were more prone to conduct positive tests.

Our findings add to the body of work showing that people can effectively reason about potential
interventions in order to learn about the structure of causal systems (Bramley et al., 2014; Lagnado
& Sloman, 2006; Meder, Hagmayer, & Waldmann, 2008; Sobel & Kushnir, 2006; Waldmann &
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Hagmayer, 2005). In the present study, learners not only chose the correct structure (out of two pos-
sibilities) with high probability, they did so on the basis of very few interventions (usually one). That
this high accuracy obtained even on early trials indicates that extensive experience with the task was
not necessary for choosing effective interventions.

Two other prior studies have compared formal models to explain causal interventions. Contrary to
our results, Steyvers et al. (2003, Experiments 2 and 3) found that a rational test model, a version of IG,
fit the data well and thus concluded that ‘‘people’s intervention choices may be explained as rational
tests given their own subjective beliefs about causal structure’’ (p. 481). Unlike this study, however,
our experiments were designed to test the predictions of IG without making assumptions about par-
ticipants’ hypothesis space. By providing two hypotheses and no prior observations, we strongly
encouraged them to have an equal prior belief over the two hypotheses. In contrast, Steyvers and col-
leagues had to infer people’s priors over the full hypothesis space, because participants only indicated
their favorite graph after an observation phase. Interestingly, the auxiliary assumption needed to
improve the fit of IG (that the favorite hypothesis is being compared to its subgraphs) yields strikingly
similar predictions to the PTS strategy when applied to only one hypothesis: it chooses nodes in pro-
portion to the number of effects that can be produced by intervening on them (see Fig. 8, last row in
Steyvers et al., 2003). Therefore, the interventions observed in their study and ours are not inconsis-
tent although we interpret them differently. Instead of attempting to discriminate hypotheses, we
argue that many of their learners and ours were performing positive tests.

Bramley et al. (2014) used a sequential causal learning paradigm in which participants started with
an unconstrained hypothesis space and could gradually narrow down the space of possible three-node
structures through repeated interventions. They concluded that participants generally chose informa-
tive interventions but often ignored evidence from previous interventions. Similar to our study, this
finding demonstrates that people are efficient but resource-limited causal learners. Like the authors
note, it would be interesting to investigate in a more controlled setting what strategies people use
in such complex, sequential intervention tasks. Given our own findings, we suspect that interventions
will reflect both discriminatory and confirmatory strategies, but further research is needed to study
the exact interplay of intervention choices, belief-updating, and cognitive constraints.

The adaptive nature of intervention choices. We identified two factors that impact strategy selection:
First, Experiment 2 demonstrated that learning the strategies’ expected payoffs encouraged more dis-
criminatory sampling. Second, Experiment 3 showed that time pressure had the opposite effect of
leading to an increase in PTS use. Both results can be understood from an adaptive view of strategy
selection (e.g., Gigerenzer & Todd, 1999; Payne et al., 1988; Simon, 1956), which suggests that people
select cognitive mechanisms on the basis of conditions in the environment as well as internal con-
straints on memory or computational capacity.

While Experiment 2 is not the first to demonstrate a behavior change from confirmatory to dis-
criminatory, previous work on hypothesis testing has focused mostly on the impact of task framing
or context. For example people behave in a more falsificationist manner in the classic Wason Card
Selection task (Wason, 1983) when it is phrased as a cheater-detection problem, such as testing if peo-
ple violate the social contract rule ‘‘If you take the benefit, then you pay the cost.’’ (e.g., Cosmides,
1989; Griggs & Cox, 1982), or some other normative rule (Cheng & Holyoak, 1985). In contrast, the
behavior change observed in Experiment 2 was based on experience with the task rather than the man-
ner in which the problem was presented. This finding ties in with others showing that people select
and adapt learning strategies based on their expected payoff in an environment (e.g., Bröder, 2003;
Marewski & Schooler, 2011; Rieskamp & Otto, 2006; von Helversen & Rieskamp, 2008).

Comparatively fewer studies have addressed the impact of computational cost on strategy selec-
tion, as was our goal in Experiment 3. Some studies manipulate the cost of searching for information
(e.g., Bröder, 2000; Newell & Shanks, 2003; Pachur & Hertwig, 2006; Rieskamp & Hoffrage, 2008),
either directly or through time pressure, and find corresponding strategy changes toward less infor-
mation-greedy algorithms. However, these studies target the external cost of collecting information,
rather than cognitive resources. The present study offers a contribution to adaptive theories of judg-
ment and decision-making by showing strategy changes as a consequence of manipulating cognitive
capacity through time pressure.
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For the most part, work on causal reasoning and structure learning has rarely adopted such an
adaptive viewpoint on strategy selection (but see Meder, Gerstenberg, Hagmayer, & Waldmann,
2010; Rottman, 2014). Instead the focus has been to propose optimal principles of causal reasoning
(e.g., Cheng, 1997; Gopnik et al., 2004; Griffiths & Tenenbaum, 2005; Rehder, 2014; Sobel,
Tenenbaum, & Gopnik, 2004) to either explain people’s behavior or to point out specific violations
of these principles. We suggest that it would be worthwhile to investigate further the repertoire of
strategies that people use to approach and simplify causal reasoning problems, and the factors that
drive which strategies are selected.

Why PTS?. Why do people use PTS at all when IG, at least in the present task, leads to higher or
equal expected accuracy? This question particularly applies to Experiment 1 in which participants
were under no time pressure and yet a sizable portion were better fit by PTS. As multiple authors have
pointed out, PTS can be a rational strategy if certain conditions are met, most importantly that the
hypothesis space is sparse (Austerweil & Griffiths, 2008; Navarro & Perfors, 2011; Oaksford &
Chater, 1994). Broadly speaking, sparsity holds when each hypothesis is consistent with a small num-
ber of observations that do not overlap much between hypotheses. If this requirement is satisfied, PTS
often yields highly diagnostic answers. Similarly in our task, PTS is a good strategy if the hypotheses
predict very different effects of an intervention. This was the case for problems used in the PTS= con-
dition of Experiment 2 (see Fig. 13), for example.

One explanation for a PTS preference is therefore that the types of causal hypotheses we come
across in every day life are sparse in the sense that effects tend to be produced by only a small number
of causal mechanisms. The chip-testing paradigm may have contributed to an assumption of sparsity
by evoking a particularly mechanistic domain of causal reasoning, encompassing causal systems like
computers, smartphones, or other electronic devices. Relationships in this domain tend to be deter-
ministic (button clicks and key presses usually create their intended effects), and there often exists
only one way to produce an outcome (e.g., there is exactly one way to turn on most devices or to make
them ‘‘work’’ in a desired way). Such a sparse hypothesis space may have encouraged the use of PTS.
One interesting avenue for future work is thus to investigate if domain-knowledge can impact
whether people choose a discriminatory or confirmatory strategy. To do so, the first step would be
to identify people’s intuitions about ‘‘causal sparsity’’ in different domains and then assess whether
their default strategies vary in the way just described.

Limitations of PTS. One contribution of this article was to develop an interpretation of positive test-
ing in causal intervention tasks (see Eq. (6)), which has not been attempted before. Although we found
evidence for this particular interpretation in our experiments, it is beyond the scope of this article to
provide a full test of its feasibility in other contexts. Several aspects of the strategy deserve further
consideration.

First, we explain above that by choosing nodes with high centrality, PTS appears to favor interven-
tions that can produce a large number of effects in one graph. But because the expected number of
effects depends on not only a graphs structure but also its parameters (e.g., causal strengths and back-
ground causes) it would be possible, for example, to have a central node that produces few effects if
intervened on, because the links to its child nodes are very weak. Since in our experiments centrality
and expected number of effects overlapped (because causal strengths did not vary), we were unable to
test whether people would still prefer central nodes if they led to fewer effects. It would be worth
exploring this question in future work.

A second limitation is that the above definition of PTS assumes that all hypothesized graphs are
treated equally when computing PTS scores. Since this article focused on single interventions given
only two hypotheses, this assumption seems unproblematic. However, it is not unreasonable to think
that with a larger hypothesis space only a subset of graphs might be considered at any point in time or
that Eq. (6) might need to be extended by a weighting term, PðgÞ, to ensure that graphs with high pri-
ors are given higher preference. Again, future work could address this question and investigate how
people use a PTS strategy when more hypotheses are being considered.

There are other properties of causal graphs and intervention types that could be interesting for
future study. For example, one could ask if PTS generalizes to cases in which causal links are inhibi-
tory. It is possible that inhibition is treated the same way as activation (such that non-activation gets
effectively treated as ‘‘positive evidence’’), but it might follow a different dynamic. It would also be
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interesting to see how the PTS strategy is used when learners can make multiple interventions at the
same time (similar to the procedure used by Bramley et al., 2014). Learners might then intervene on
multiple nodes if these are necessary to create all the effects in a given structure.

Cognitive mechanisms. With the combined model of intervention selection, we have developed a
descriptive framework that captures to what degree people behave in accordance with a discrimina-
tory IG strategy or a confirmation-based PTS model. However, it is still an open question what cogni-
tive mechanisms give rise to these strategies and a mix of them.

For example, it is an open question how people determine the value of a node for confirming or
discriminating hypotheses. They might use surface-level features of the causal networks, like root
causes or links that differ between hypotheses, to determine a node’s value, for example. It’s also
unclear how strategies are then combined to yield a choice. Rather than fully computing both
strategies and weighting them, for example, it is possible that they are recruited sequentially or
partially. The response time findings reported for Experiment 1 hint at the possibility that rather
than merely combining the two, there can exist competition between them, such that decisions
become more difficult when the two strategies disagree. This could happen, for example, if people
started out using a simple confirmatory strategy and then (sometimes) check whether the resulting
intervention plan also serves discriminatory purposes. A negative answer could lead the learner to
initiate an IG-based search, leading to longer RTs. This sequential process is also compatible with
the finding of higher PTS-use in Experiment 3, because the time pressure manipulations could have
led participants to stop after computing PTS, without checking for the discriminatory value of an
intervention.

Again, future work should address plausible mechanistic implementations of discriminatory and
confirmatory strategies and their combinations. In particular, we think it might be worthwhile to
study the time course of intervention decision-making with process measures like eye or mouse track-
ing to investigate, for example, when and to what degree participants compare hypotheses to one
another, or search for root nodes in individual graphs.
6. Conclusions

Previous work has argued that people follow discriminatory principles of information search when
planning causal interventions. In contrast, we found that peoples interventions were not well
described by information gain alone but instead reflected the influence of a confirmatory positive test-
ing strategy. Learners flexibly adapted their mix of strategies, performing more discriminatory tests
when they produced large gains in accuracy and more confirmatory tests when time was short.
These results suggest a more adaptive view of self-directed causal structure learning than has so far
been considered.
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Appendix A

Fig. 16 shows the hierarchical Bayesian model used to derive posterior predictions for the two indi-
vidual models, IG and PTS, to create the triangle prediction plots in the main body of the text.
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Appendix B

Table 4 shows other plausible discriminatory and non-discriminatory models that were fit to the
data, along with a series of goodness-of-fit measures, which can be compared the original IG and
PTS models in Table 2.
B.1. Alternative discriminatory models

Our aim in testing additional versions of IG was to determine if its inadequate fit was due to con-
straints imposed on its parameters. First, whereas our baseline version of IG assumed equal prior
beliefs over the causal structures (common cause, common effect, chain, and one-link), in another
version those priors were free parameters. Second, whereas baseline IG set the strengths of the cau-
sal links to the true (and instructed) value of .8, a third version allowed strength to vary freely.
Table 4 reveals that both versions achieved better fits than baseline IG according to BIC, which cor-
rects for their greater number of parameters. Importantly, however, neither outperformed the com-
bined model (cf. Table 2). Thus, the conclusion that IG is an inadequate account of the present data
cannot be attributed to constraints placed on its parameters. Note that the somewhat implausible
parameter values produced by these additional fits also raise questions about whether they are
faithfully capturing learners’ underlying decision processes. For example, the near-zero priors for
the common cause and one-link strikes us as unrealistic given that subjects were not told to favor
any structure over another. Similarly, the fitted causal strength value of .4 is surprising given that
subjects were told that the links’ strength was .8 and received training in which they experienced
that strength. An additional reason to doubt that strong structure priors influenced the data is that
participants endorsed all structures with equal likelihood (50%) at the end of trials, so there was no
bias at this stage.

We also tested an alternative discriminatory model, probability gain (Baron, 1985; Nelson, 2005),
the predictions of which turned out to be almost identical to IG in the current task (r ¼ :99 on the
problems of Experiment 1) and thus offered a comparable fit to the data. The combination of PG
and IG, shown in Table 5, also does not offer a better fit to the data than the original combined model.
Fig. 16. Hierarchical Bayesian model of how one of the strategies (IG or PTS) generate intervention choices given a probabilistic
choice procedure. Each trial, j, corresponds to one of 27 problem types for which each participant chose one intervention, y. Vj is
a three-vector with the IG or PTS score of each node on problem j.



Table 4
Other models tested on the data of Experiment 1. Probability Gain maximizes the probability of making a correct structure choice
after the next intervention. The IG & Prior model estimates parameter values for the prior beliefs over the four graph types:
Common Cause (CC), Common Effect (CE), Chain, and One-Link (OL). The IG & Strength model estimates the probability, p, of one
node to turn on its child nodes as a free parameter. PTS (sum.) uses the sum of relative centralities (see Eq. (6)) instead of the
maximum. Expected Changes calculates the expected number of effects across both hypotheses, that is, this strategy amounts to the
desire to make as many things ‘‘happen’’ as possible.

Model Log lik. BIC R2 s pðCCÞ pðCEÞ pðChainÞ pðOLÞ p

Probability Gain �442 886 .61 .39 – – – – –
IG & Prior �324 656 .78 .39 .00 .50 .47 .03 –
IG & Strength �331 666 .75 .35 – – – – .40
PTS (sum.) �490 989 .48 .43 – – – – –
Exp. Change �448 904 .54 .39 – – – – –

Table 5
Combined versions of alternative non-discriminatory and discriminatory models. Compare these models to the fit of the combined
model in Table 2 in the main text. All have lower log likelihoods, indicating they fit the data less well.

Model Log lik. BIC R2 s h

PG & PTS �243 502 .82 .22 .38
IG & PTS (sum.) �236 489 .83 .24 .53
IG & Exp. Change �243 501 .83 .25 .50
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B.2. Alternative non-discriminatory models

We also tested two alternative versions of the non-discriminatory PTS model. According to Expected
Change, the value of a node is the average, across graphs, of the number of expected effects, that is, the
number of nodes that can be expected to be turned on after an intervention. As Table 4 shows, it does
not fit as well as PTS. For example, for Problems 26 and 27 this model favors an intervention on the
chain’s root node (whose expected change is 1 [2 descendants in the chain, 0 in the one-link]) over
the cause of the single link structure (.5; [0,1]). In fact however, learners were about evenly divided
between the two, as predicted by baseline PTS.

By using a sum operator instead of a maximum in Eq. (6), the second variant of PTS favors inter-
ventions with the largest number of link activations over all graphs. For example, for Problem 3 this
model favors the root of the common cause (2 activations in the common cause structure + 1 in the
chain = 3) over the root of the chain (0 + 2 = 2). Learners instead favored them both equally, consistent
with a maximum operator. Note that yet another alternative in which an average is used instead a sum
yields the same predictions.

We also combined each of these models with IG to see if they complement IG better than baseline
PTS. Table 5 reveals that they do not.
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