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Abstract
Although a common assumption in models of perceptual dis-
crimination, most models of categorization do not explicitly
account for uncertainty in stimulus measurement. Such un-
certainty may arise from inherent perceptual noise or external
measurement noise (e.g., a medical test that gives variable re-
sults). In this paper we explore how people decide to gather
information from various stimulus properties when each sam-
ple or measurement is noisy. The participant’s goal is to cor-
rectly classify the given item. Across two experiments we find
support for the idea that people take category structure into
account when selecting information for a classification deci-
sion. In addition, we find some evidence that people are also
sensitive to their own perceptual uncertainty when selecting
information.
Keywords: attention, categorization, information sampling

Categorizing objects or situations into meaningful groups
is a critical cognitive ability. Many existing theories of
categorization share an unrealistic assumption that informa-
tion about the features of a to-be-categorized object can be
directly and precisely observed (Medin & Schaffer, 1978;
Nosofsky, 1986; Smith & Minda, 1998; Love, Medin, &
Gureckis, 2004). But this is often not the case; for exam-
ple, doctors do not always have full access to all the informa-
tion about patient symptoms (i.e., stimulus features) but in-
stead can only rely on a patient’s self-report and medical tests
which are subject to selective reporting and noise (perceptual
or otherwise). If a doctor orders a cholesterol test, they must
take into account that the patient’s true levels are somewhat
different than those reported by the test due to error or noise.
There is often uncertainty not only about the category of an
object but also about its specific dimension or feature values.

If noise and uncertainty are the affliction, then the anti-
dote is the fact that categorizers can often select how fea-
ture or stimulus measurements are made. In many cases, a
good strategy for selecting measurements (e.g., repeating the
same measurement when it is known to be noisy) can sig-
nificantly improve categorization performance. Here we ask
what strategies people use to select stimulus measurements
in the service of categorization. While previous approaches
to this question tend to focus on how people select stimulus
features to view without noise before making a categoriza-
tion decision (e.g., Nelson, McKenzie, Cottrell, & Sejnowski,
2010 or in eye and mouse tracking studies, Rehder & Hoff-
man, 2005; Matsuka & Corter, 2008; Blair, Watson, Walshe,
& Maj, 2009) here we explore the effect of measurement or
perceptual noise on information sampling strategies.

Categorizing in a Noisy World
We begin by presenting an Ideal Actor analysis of catego-
rization under measurement noise which extends the General

Recognition Theory (Ashby & Townsend, 1986). We then
present a series of experiments exploring how people sam-
ple information about category features under conditions of
stimulus noise.

Categorizing without perceptual noise The standard
model of a probabilistic binary categorization task (Medin &
Schaffer, 1978; Nosofsky, 1986; Smith & Minda, 1998) as-
sumes that on a given trial t, a category Ct ∈ {A,B} is drawn
randomly and a stimulus st is generated from the distribution
associated with Ct (see Figure 1a). Subjects are assumed to
either learn the parameters of these distributions through ex-
perience or description. Based on the information in st , sub-
jects guess which category Ct ∈ {A,B} it was generated from.
For example, in our first experiment, the stimuli have two
dimensions, color and orientation, i.e. st = [storientation ,stcolor ]
and the category distributions are bivariate Gaussian distri-
butions N (µµµCt ,ΣΣΣ) where the mean is dependent on the cat-
egory and we can decompose the covariance matrix as ΣΣΣ =[

σ2
orientation ρσorientationσcolor

ρσorientationσcolor σ2
color

]
. The Ideal Observer

decision rule, assuming knowledge of the category distribu-
tions, is to use the log-likelihood ratio

l(st) =
logP(s = st |Ct = A)
logP(s = st |Ct = B)

(1)

This rule responds A when l(st)> 0 and B otherwise (Ashby
& Gott, 1988).

Categorizing with perceptual noise In the 1980s, Ashby
and colleagues developed General Recognition Theory
(GRT), a family of models of multidimensional classifica-
tion that assumed perceptual noise, in contrast to the mod-
els above (Ashby & Townsend, 1986). Here we discuss a
special case of GRT that uses the Ideal Observer decision
rule and makes two critical assumptions about perceptual
noise: that perceptual noise has a normal distribution and
that the noise in perceiving each stimulus dimension is in-
dependent. In this model, on trial t the subject perceives a
percept pt = [ptcolor , ptorientation ] with probability N (pt ;st ,ΣΣΣp)

where ΣΣΣp =
[

σ2
porientation

0
0 σ2

pcolor

]
. ΣΣΣp is diagonal due to the in-

dependent noise assumption and σ2
porientation

and σ2
pcolor

are a
subject’s perceptual noise for orientation and color respec-
tively. When making their categorization decision, subjects
only have access to pt rather than st as before (see Figure 1b).
Therefore, the Ideal Observer’s decision rule is now based
on the log likelihood ratio l(pt) where pt is distributed under
each category as N (pt ;µµµCt ,ΣΣΣ+ΣΣΣp)



Reducing uncertainty by making measurements One
strategy for dealing with uncertainty in the percept pt is to
exert control over the amount of information collected about
each stimulus dimension. In our task, the categorizer is given
a fixed budget of κ noisy measurements mt of a stimulus
made up of two dimensions. These measurements can be allo-
cated so that there are λorientation measurements of the orienta-
tion dimension and κ−λorientation measurements of color with
λorientation ∈ [0,κ]. Conceptually, this is like a doctor ordering
multiple runs of medical tests and collect more or fewer runs
of some tests over others. As in our experiment, orientation
measurements are each independently distributed with prob-
ability N (storientation ,σmorientation) and similarly for color. Be-
cause these measurements are all normally distributed, the
mean measurement m̄t is distributed as N (st ,ΣΣΣm), where

ΣΣΣm =

σ2
morientation

λorientation
0

0
σ2

mcolor
κ−λorientation

. We now assume that subjects

estimate the mean of several colors or oriented lines with a
constant variance, largely supported by the literature on en-
semble perception (e.g., Maule & Franklin, 2016; Dakin &
Watt, 1997). We assume the same perceptual distribution as
above except p̄t represents a subjects estimate of the mean
measurement and ΣΣΣp represents their noise in estimating that
mean. Let ΣΣΣmp =ΣΣΣ+ΣΣΣm +ΣΣΣp. Therefore,

P(p̄ = p̄t |Ct) = N (p̄t ;µµµCt ,ΣΣΣmp) (2)

The optimal decision rule depends on the log likelihood ratio
l(p̄t) as above.

Optimizing stimulus measurement In our most interest-
ing setting (see Figure 1c), we allow subjects to choose λ

in order to maximize their own categorization performance.
This is akin to the doctor trying to optimize the probability
of a correct diagnosis while trying to keep the cost of run-
ning the medical tests below a budget. To make the depen-
dence on λ explicit, we can rewrite ΣΣΣmp as ΣΣΣmp(λorientation) =[
(σ2

orientation +
σ2

morientation
λorientation

+σ2
porientation

) ρσorientationσcolor

ρσorientationσcolor (σ2
color +

σ2
mcolor

κ−λorientation
+σ2

pcolor
)

]
. The

expected percent correct of an Ideal Observer with a given
λorientation should be (Anderson, 1958):

EC(λorientation) =
1
2

erfc

(
−
√
(µµµA−µµµB)′ΣΣΣmp(λorientation)−1(µµµA−µµµB)

2
√

2

)
(3)

The Ideal Actor should then set λorientation to λ∗orientation =
argmaxλorientation

EC(λorientation).

Theoretical Predictions
In the following experiment, subjects perform a categoriza-
tion task with stimuli that vary on color and orientation di-
mensions. Subjects only receive κ noisy signals of what
the color and orientation of the stimulus are but choose a
number λorientation of signals to receive of the orientation
dimension. By varying the type of category structure (the
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Figure 1: (a) Graphical model of the standard categorization model
where stimuli s depend on the category C. (b) a model analogous to
General Recognition Theory where stimuli s depend on the category
C but are never directly observable. Instead, the observer has access
to p which itself depends on s but is corrupted with noise. (c) An
active learning model of categorization under uncertainty. Here λ

reflects the number of measurements m made of the stimulus s. The
categorizer has access to p which depends on the category, stimulus,
and the information sampling strategy (m and λ).

two P(s|C) for category A and B) experimentally and us-
ing natural variation in perceptual noise, we can test two
predictions about how subjects should select signals based
on the above Ideal Actor model. We first divide cate-
gory structures into three groups: 1D-color structures where
P(orientation|A) = P(orientation|B), 1D-orientation struc-
tures where P(color|A) = P(color|B) and 2D structures oth-
erwise. We predict:

1. The rank ordering of subjects choice of λorientation should
be 1D-color ≤ 2D ≤ 1D-orientation

2. Within 2D categories, subjects choice of λorientation will be
modulated by the subject’s measured perceptual noise.

Intuition for the two hypotheses can be seen in the Ideal Ac-
tor predictions in Figure 2 which plots expected Ideal Ob-
server percent correct as a function of strategy and category
structure in (a) and perceptual noise in (b). In the 1D-color
situation accuracy is optimized by collecting zero orientation
samples. In the 1D-orientation, accuracy is highest with 10
orientation samples. In the 2-D case, accuracy is optimized
with 5 samples (Figure 2a). Furthermore the peak of these
functions changes with perceptual noise (Figure 2b).

Experiment 1
In order to test these predictions, we used a task divided into
six phases. In the first two phases, we estimated the free pa-
rameters of the Ideal Actor, σ2

porientation
and σ2

pcolor
, the subjects’

noise in estimating the mean of a number of colored dots and
oriented lines using a 2AFC task. In the next three phases,
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Figure 2: (a) Ideal Observer expected percent correct as a function
of condition (described in Table 1) and strategy. The rank order of
the max of these curves is 1D-color ≤ 2D ≤ 1D-orientation. (b)
Ideal Observer expected percent correct if subjects had no percep-
tual noise (in red). In our experiment, we estimated noise parameters
(σorientation and σcolor) using a 2AFC task. Shown in blue and purple
are Ideal Observers with estimated noise parameters from two dif-
ferent subjects. Perceptual noise has a strong influence on optimal
strategy which is indicated by the arrow

subjects underwent extensive training to learn the category
and measurement distribution parameters (assumed known by
the Ideal Actor). In the final test phase, subjects performed a
categorization task where they could decide how allocate a
fixed budget of samples to the two stimulus dimensions. All
phases were 100 trials except the first category learning phase
which was 200.

Participants Sixty one participants were recruited through
Amazon Mechanical Turk. Participants received $8 for par-
ticipating in the experiment with a performance based bonus
of up to $10. Ten trials were selected at random from the
entire experiment and participants were awarded a bonus of
$0.25 for each trial correct. Participants were randomly as-
signed to the eight conditions described in Table 1.

Stimuli and Procedure All stimuli in the experiment were
generated randomly by drawing samples from the generative
model. To generate the stimuli, each sample corresponded
to either the angle of an oriented line relative to the circle or
the color of a dot where the number was the angle on a cir-
cle of radius 60 in CIE 1976 (L*, a*, b*) color space. The
locations of the colored dots on the screen were determined
by force layout, an algorithm within the d3 javascript visual-
ization library (Bostock, Ogievetsky, & Heer, 2011). Exam-
ples of these stimuli can be seen in (Figure 3). Throughout
the experiment, the “measurement noise” σm = σmorientation =
σmcolor = .6.
Perceptual Noise Estimation Phases. We adapted a 2AFC
task from Jogan and Stocker (2014) designed to estimate sub-
jects’ noise in estimating a property of a stimulus. We con-
ducted this task in two phases, one for orientation and one for
color (with order counterbalanced across subjects). On each
trial of the task, three stimuli s∈ {test, reference1, reference2}
were presented. The subject was asked which of the two ref-
erence stimuli was closer in terms of the property of interest
to the test stimulus and responded by pressing the appropriate
computer key. The specific properties of interest here were
the average orientation of a set of several lines or the aver-

age color of a set of several dots. The stimuli during these
phases looked the same as the stimuli in the later categoriza-
tion phase (Figure 3b) but with just one feature present. On
a given trial t, stimuli were generated by drawing nt samples
from N (µst ,σ

2
m) with nt ∈ [1,10] to keep the range and set

sizes of the stimuli the same as in the later categorization ex-
periment. µst was selected on each trial by a Bayesian adap-
tive procedure (Kontsevich & Tyler, 1999). Using an Ideal
Observer analysis detailed in Jogan and Stocker (2014), we
can estimate the perceptual noise parameters for identifying
the mean of the stimuli based on subjects’ performance in this
task.
Category structures/conditions. Throughout the four catego-
rization phases, stimuli were generated from a single pair of
categories, chosen from a set of eight categories described in
Table 1. For each subject, each dimension was shifted by a
random amount chosen from a uniform on [0,2π] to wash out
any effect of a specific stimulus range.

Condition µµµA µµµB ΣΣΣ

1D-orientation [0, 0] [1, 0]
[
.2 0
0 .2

]
1D-color [0, 1] [0, 0]

[
.2 0
0 .2

]
2D1 [0, 0] [.24, 62]

[
.22 −.2
.2 .22

]
2D2 [.24, 62] [0, 0]

[
.22 −.2
.2 .22

]
Table 1: Category parameters for Experiment 1. There were eight
categories total, with the other 4 being the same but with the en-
tries of µµµA and µµµB swapped. For the main analysis, we collapse the
conditions that share the parameters.

Category Learning Phase. In the category learning phase, a
category was drawn from a uniform distribution and a bivari-
ate sample was drawn from that category’s associated distri-
bution. This sample was converted to the color and orienta-
tion stimulus space using the procedure described above (see
Figure 3a for an example). Subjects responded by hitting the
“Q” key if they thought the stimulus was in category A and
the “P” key if the stimulus was in category B. Subjects then
received feedback on whether they were correct or incorrect
depending on the category structures defined above.
Measurement Noise Learning Phases The measurement noise
learning phases were meant to acclimatize the subject to the
effects of measurement noise on categorization. The stim-
uli were created by sampling from the full generative model
for the task as described in the theory section and converting
samples to the stimulus space as described above. During this
phase, subjects did not get to choose the number of measure-
ments of each dimension. Instead, stimuli in the first phase
included ten measurements of each dimension (κ = 20 and
λorientation = 10) and stimuli in the second included a total of
ten measurements with a random number of them allocated
to orientation (κ = 10 and λorientation ∈ [0,10]) See Figure 3b
for an example of the stimuli in this phase. Note that there



(a) Category training phase (b) Measurement training
and test phases

Figure 3: Example categorization trials

are multiple lines/dots in this stimulus reflecting the multi-
ple noisy “measurements” made of each dimension. In order
to gain an intuitive understanding of the measurement proce-
dure, subjects were told “we showed the color of the stimulus
to 10 people and the location of the stimulus to 10 different
people. Later each of them had to re-create what they saw
from memory. Your task will be to take their recreations and
try to guess what category you think the original stimulus be-
longed to.” After every trial, subjects would receive feedback
on their categorization judgement as well as feedback about
what the true stimulus st had been on that trial.
Test Phase During this phase, subjects chose on a slider how
many measurements of each dimension they would see on
each trial (λorientation). Stimuli were then generated in the
same manner as in the measurement noise learning phases.
Subjects then performed the classification task as in the pre-
vious training sections.

Results
For each subject, we computed the posterior over the
σ2

porientation
and σ2

pcolor
parameters using the analysis described

in Jogan and Stocker (2014). In order to check that the
Bayesian adaptive procedure converged towards the correct
estimate, Jogan and Stocker use a diagnostic called the
Boundary Index (BI) a measure of the number of trials that
were chosen to be at the boundary of the space. All of our
subjects were below the recommended threshold of 0.9.

Using the perceptual noise posterior, we compute a poste-
rior over Ideal Actor strategies for every subject in our ex-
periment. Since each subject only experienced a single set of
categories in the test phase, the Ideal Actor only uses a single
λorientation parameter for the entire experiment. However, sub-
jects were able to change their choice of λorientation parameter
on every trial and relatively few subjects used just a single
value. In order to compare subjects to the model, we took an
average each subjects’ setting of λorientation. We chose a pri-
ori to average only the second half of test trials to ensure that
subjects had stabilized after having experience with using the
slider. The results turn out to be unchanged even if we use all
of the data from the test phase.

In order to test our first hypothesis we used Kendall’s τ, a

(a) (b)

Figure 4: (a)Scatter plot of subjects strategies vs. the Ideal Actor
(IA) strategy posterior mean. X error bars are +- 1SD of the IA pos-
terior and Y-error bars are standard error of mean subject strategy.
(b)Expected number additional incorrect Ideal Observer (IO) trials
relative to the Ideal Actor (IA). We do not include error bars on the
actual performance since the sampling distribution is over trial se-
quences while the sampling distributions on the Ideal Observers are
over measurement selections averaged over trial sequences.

common non-parametric rank-correlation method. We found
a significant monotonic relationship between category struc-
ture and subjects’ λorientation choice with 1D-color < 2D <
1D-orientation (Kendall τ(59) = 0.52, p < 1e-8).

We also found a significant linear relationship between
subjects’ λorientation parameters and the posterior mean Ideal
Actor (Pearson r(59) = 0.65, p < 1e-8). This result was still
significant using just the data from the 2D structure where dif-
ferences in Ideal Actor strategies are only due to differences
in estimated perceptual noise (Pearson r(30) = 0.38, p = 0.03).
This provides weak evidence for our second hypothesis.

Given that many subjects did not use just a single λorientation
throughout the whole experiment, what was the cost of their
suboptimal choice? Did they know to avoid choices that
would lead to significantly worse performance? To answer
this, we compare the theoretical performance of the Ideal Ac-
tor to what we call the subject Ideal Observer, the theoreti-
cal performance of an Ideal Observer who chose λorientation
on every trial as the subject did. The subject Ideal Observer
performance is of interest because it isolates the expected
decrease in performance solely due to choice of λorientation.
In contrast, differences between subjects’ actual performance
and the Ideal Actor may be for several reasons unrelated to the
information selection strategy. In Figure 4b, we compare the
Ideal Actor to subject Ideal Observer performance (in blue),
subjects’ actual performance (in black) and a baseline where
the Ideal Observer who chose λorientation randomly (in pur-
ple). Only seven out of sixty-one subjects had subject Ideal
Observers that did not perform significantly better than the
baseline suggesting that most subjects were sensitive to the
costs of choosing λorientation incorrectly.

Discussion
We found some preliminary evidence suggesting that peo-
ple take category structure and perceptual noise into account.
While the correlation between the Ideal Actor and subjects
strategies was significant, subjects deviated from the Ideal
Actor in other significant ways. In particular, subjects of-



ten used multiple λorientation’s throughout the experiment and
actual categorization performance did not match the subject
Ideal Observer – two substantive suboptimalities. There may
be several reasons for this including that subjects might not
use the Ideal Observer rule for categorization or subjects did
not learn the exact category parameters in the time allotted. It
is difficult to assess subject knowledge in this task since the
average subject only had 75% agreement with the Ideal Ob-
server during the last 10 trials of the category learning phase.
Also, a MANOVA found that subjects’ disagreement with the
Ideal Observer and suboptimality was significantly different
across category types (Wilk’s Λ = .62, F(2, 58) = 7.6, p=1e-4).
This suggests that subjects might have significantly different
knowledge about the category across conditions. Finally our
estimates of σ2

porientation
and σ2

pcolor
may not be perfect which

might bias our Ideal Actor model.
Not learning the category parameters is probably the most

serious issue since the Ideal Actor strategy depends heavily
on these parameters. In order to address this, we conducted
a second study involving only binary-valued stimulus fea-
tures. With only a finite number of possible stimuli, we can
easily check whether subjects have “learned” the category in
the sense of having a high agreement with the ideal observer
when selecting the category for a given stimulus.

Experiment 2
Participants Thirty three participants who did not partici-
pate in the previous experiment were recruited through Ama-
zon Mechanical Turk. Payment was the same as in Experi-
ment 1.

Categorization Task Subjects in this task were instructed
that they needed to help a doctor discover how to categorize
patients presenting certain symptoms. Subjects would see the
outcome of two medical tests represented as the color of hor-
izontal and vertical lines (blue if positive and red if negative).
All four of the possible outcomes can be seen in Figure 5
(a). Based on the stimulus, subjects would have to determine
which of two diseases (A or B) the patient had. These dis-
eases (or categories) were defined as bivariate Bernoulli dis-
tributions over possible test outcomes. Let 1 denote a positive
test and 0 denote a negative test. Then let P(|̇D) be a matrix
where each entry with index [v,h] indicates the probability of
the vertical test taking on value v ∈ (0,1) and the horizon-
tal test taking on value h ∈ (0,1) given that the patient has
disease D ∈ A,B. We used category conditions described in
Table 2.

In the first phase of the experiment, subjects simply saw
the stimuli in Figure 5 with the above probabilities and sub-
jects were told that the tests were performed with no mea-
surement noise. In the later phases, subjects were told that
they now would see κ tests on every trial with λhorizontal mea-
surements of the horizontal tests. These tests had Bernoulli
measurement noise, i.e. the probability of the horizontal
test outputting k tests with the true value on each trial was(

λhorizontal
k

)
pk(1− p)(λhorizontal−k). In this experiment, we used

Condition P(|̇A) P(|̇B)

1D-horizontal
[
.5 0
.5 0

] [
0 .5
0 .5

]
1D-vertical

[
.5 .5
0 0

] [
0 0
.5 .5

]
2D

[
.5 0
0 .5

] [
0 .5
.5 0

]
Table 2: Category parameters for Experiment 2. There were six
conditions total, with the other three being the same but with the
category labels swapped. For the main analysis, we collapse the
conditions that share the parameters.

a p of .8. Figure 5 shows an example of a noisy stimulus
(i.e., multiple measurements of the horizontal or vertical line
segment) with it’s true value below. The choice of κ and
λhorizontal in each phase was exactly the same as in Experi-
ment 1 with subjects having a choice of λhorizontal in the last
phase as before. The first three phases of this experiment each
consisted of 200 trials and the last phase had 100. While we
could not derive a general analytic solution to the Ideal Actor
in this case, we can easily compute the strategy by enumer-
ating all of the potential observed measurements. We also
assume that in this case the effects of perceptual noise on per-
formance are minimal.

(a) Discrete-valued stimuli (b) Noisy discrete-valued
stimulus with true value be-
low

Figure 5: Example experiment 2 stimuli

Results
According to hypothesis 1 above, the rank order of the subject
λhorizontal in each category structure should be [1D-vertical ≤
2D ≤ 1D-horizontal]. We again found a significant mono-
tonic relationship between category structure and subjects’
λhorizontal choice in the direction we hypothesized (Kendall
τ(31) = 0.747, p < 1e-9). In addition, we found a significant
linear relationship (Pearson r(31) = 0.855, p < 1e-9) meaning
that the exact number of samples subjects chose were propor-
tionally similar to the Ideal Actor. One interesting feature
of the data was that most of the errors in subjects responses
were in the one-dimensional categories, which may be due
to a general hesitancy to only sample information about one
feature.

We can also perform the same cost analysis as for the pre-
vious experiment. Figure 6b shows that only one subject did
not select measurements significantly better than the random



(a) (b)

Figure 6: (a)Violin plot of subjects strategies as a function of cat-
egory structure. (b)Expected number of additional incorrect trials
relative to the Ideal Actor

baseline. We can also check whether subjects truly learned
the categories: on average subjects had a 96% agreement with
the Ideal Observer in the second half of the category learning
phase and only 1 subject was below 90%. In addition, based
on a MANOVA, there was no effect of category structure on
suboptimal measurement selection or agreement with Ideal
Observer (Wilk’s Λ = .88, F(2, 30) = .96, p=.43) suggesting
that none of the conditions were more difficult than the others.

Conclusion
We developed a new categorization paradigm in order to
study people’s strategies for information selection. These
tasks allowed us to study human information selection in
categorization tasks with measurement and perceptual noise,
which we argue is the typical situation in everyday catego-
rization. We analytically derived an Ideal Actor model of this
task and from that derived two qualitative predictions for hu-
man behavior: 1) that subjects would be sensitive to the cat-
egory structure and 2) their own perceptual noise. In Exper-
iment 1, the predictions for perceptual noise were not fit to
the selection task but estimated in a separate psychophysics
task. Across two experiments, we demonstrated that most
subjects take into account the category structure. The first ex-
periment provided some evidence that subjects take into ac-
count perceptual noise as well although the evidence is some-
what weaker.

In order to get a better understanding of people’s strategies,
future work could address several additional questions includ-
ing whether people are sensitive to the costs of information
collection (see Meder and Nelson (2012) for some evidence
that they do not) of different costs for correct or incorrect an-
swers. Another direction might be whether people may be
more sensitive to certain features of the categories (such as
differences in the mean) than others (like the feature covari-
ance). Finally, information selection has been proposed to be
important in several other domains. Feature-based perceptual
attention (Scolari, Edward, & Serences, 2014) can be thought
of as a type of information selection and our model has par-
allels with some existing models in that literature (Palmer,
1990). A future experiment could use our model to investi-
gate how people allocate perceptual resources during catego-
rization. Many economists have recently investigated limited

information as an explanation for many economic phenomena
(Caplin, 2015) but have often assumed that people collect in-
formation optimally. Using this model and measurement se-
lection task could allow assessment of how people actually
select information in choice situations.
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