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Abstract
A child invents a game, describes its rules, and in an instant,
we can play it, judge progress, and even suggest new varia-
tions. What mental representations enable such flexible reason-
ing? We build on recent work formalizing naturally expressed
goals as a type of program, grounding linguistic descriptions
into precise scoring systems. To support this notion, we study
human-created objectives in a physics game environment. We
leverage the formal representations to quantitatively analyze
relationships between reward geometry, goal complexity, and
perceived difficulty. We then propose a proof-of-concept of a
computational goal inference method using these program rep-
resentations and behavioral demonstrations, offering a concrete
proposal of how humans reason about others’ goals.
Keywords: goals, play, goal inference, program synthesis,
domain-specific language, physics environment

Introduction
Goals fundamentally shape human cognition and behav-
ior—organizing our actions, directing our attention, and struc-
turing our learning (Dweck, 1992; Austin and Vancouver,
1996; Fishbach and Ferguson, 2007). Yet cognitive science
has largely taken goals as given, studying how predetermined
objectives influence behavior while leaving deeper questions
unexplored: What exactly are goals, and how are they mentally
represented? These questions carry particular weight given
two factors. First, flexibility: our representations of goals
facilitate planning toward them, evaluating progress toward
them, suggesting variations, and inferring likely goals from be-
havior. Second, novelty: humans, unlike other animals whose
goals are largely shaped by survival needs (Tomasello, 2022),
display a remarkable capacity to generate and pursue novel
objectives. This ability emerges early in development (Chu
and Schulz, 2020) and persists throughout life, with humans
constantly inventing new challenges and games for themselves.
Indeed, this autotelic nature — our drive to create and pursue
self-generated goals — appears central to human learning and
exploration (Czikszentmihalyi, 1990; Ryan and Deci, 2000;
Chu et al., 2024). Understanding the cognitive foundations of
this core human capability requires us to identify what mental
representations could support both the remarkable breadth of
human goals and our fluid ability to generate new ones.

Recent work by Davidson et al. (2025) proposes modeling
goals as reward-producing programs within the language of
thought paradigm (Fodor, 1979; Goodman et al., 2008; Rule
et al., 2020). Under this framework, goals are represented as
symbolic expressions with well-defined syntax and semantics,
enabling the composition of complex objectives from simpler

components. This approach facilitates concept reuse and al-
lows partial or complete goal achievement evaluation, acting
as an abstraction over the reward functions typically used in
reinforcement learning. Here, we extend their work, applying
these goal representations in a new domain and demonstrating
how they facilitate goal inference from behavior. To study
goal inference, we begin by collecting a rich dataset of human-
generated goals, demonstrations of their achievement, and self-
reported difficulty ratings. We then demonstrate how these
reward-producing program representations enable inferring an
agent’s goal from a few samples of their behavior.

We proceed by describing our experiment, the formal se-
mantics of our reward-producing goal programs, and our ap-
proach to translating from natural language descriptions into
these structured representations. By analyzing the goals peo-
ple create, we find relationships between the geometry of a
goal’s reward landscape, its complexity, and its assessed diffi-
culty. We observe, in particular, that post-gameplay assessed
difficulty is associated with reward sensitivity (the degree of
accuracy required for top scores) and with actual participant-
achieved scores. Finally, building on recent work on inferring
goals from behavior, we demonstrate a proof-of-concept for a
program-based inverse reinforcement learning algorithm.

Related work
Our treatment of goals as programs follows in a line of work
instantiating Fodor’s (1979) Language of Thought in code-
like representations (Goodman et al., 2008; Piantadosi et al.,
2012; Rule et al., 2020; Wong et al., 2023). Our dataset of
human-generated goals is inspired by Davidson et al. (2025),
which also collected human-generated goals in a rich physics-
based environment. Our new dataset was designed to be more
broadly useful to the community, with more human-generated
goals (∼ 400 vs. ∼ 100), a simpler environment better suited
for comparing humans and machines, and a simple action
space that facilitates computing the optimal action for a given
goal. This makes our dataset and environment better suited
for building agents from autotelic learning principles or for
building models of goal inference from the behaviors of others.

Our study of goal inference builds on a body of work re-
lated to Bayesian theory of mind—models that seek to infer
the goals and/or beliefs that best explain a person’s observed
behavior (Baker et al., 2009; Ullman et al., 2009; Baker et al.,
2011). Our work differs from this previous work in handling
more expressive goal representations: previous models have



focused on much simpler objectives, such as agents reaching
one or more target locations (Baker et al., 2011; Velez-Ginorio
et al., 2017; Baker et al., 2017) or achieving a specific world
state (Zhi-Xuan et al., 2020; Alanqary et al., 2021; Zhi-Xuan
et al., 2024). Ultimately, to capture goal inference in our new
dataset, we envision a complete model involving Bayesian
inference over candidate reward-producing programs.

Experimental Design and Data Collection
We designed an experiment to study how humans create new
goals. Our design prioritizes two key elements: enabling
natural goal creation while maintaining precise labeling of goal
objectives. Participants explored five different configurations
of the environment, creating and demonstrating novel goals for
each one. For each goal, they provided both natural language
descriptions and explicit scoring criteria, allowing us to bridge
between intuitive human goal descriptions and formal reward-
producing program specifications (Davidson et al., 2025).

Game Environment. Our experimental game environment
Figure 1 was designed to study goal creation while balancing
ecological validity with computational tractability. We devel-
oped a novel two-dimensional launching game inspired by the
famous Angry Birds game and similar physics-based experi-
mental paradigms (e.g., Allen et al., 2019; LeGris et al., 2024).
The core interaction is deliberately kept simple: participants
launch a blue ball with adjustable power and angle and then
observe the resulting physics-driven interactions. The environ-
ment included a carefully chosen set of interactive elements:
static objects (bins, shelves), dynamic elements (conveyor
belts, bouncers), and special items (magnets, portals, vanish-
ers), see Figure 1. This combination enables rich goal creation
while keeping the action space tractable — each play attempt
involves just one launching decision (similar to pinball), mak-
ing it feasible to simulate all possible trajectories in any given
configuration of the environment. We implemented the envi-
ronment using the Phaser game engine (Phaser Developers,
n.d.), the Matter.js physics engine (Liam Brummitt, 2014),
resources from Kenney Assets (Kenney, 2025), and the Smile
web experiment development platform (Gureckis et al., 2025).

Experiment Protocol. The experiment consisted of three
phases: participant training, goal creation across five levels,
and goal demonstration. Before beginning, participants com-
pleted a tutorial introducing the environment mechanics and
object interactions, followed by a guided walkthrough of the
goal creation process. A comprehension quiz ensured under-
standing of key experiment requirements. In the main phase,
participants encountered five different level configurations,
each existing in two variants: a “full” version with many inter-
active elements and a “minimal” version with fewer objects.
Participants were randomly assigned a level order and en-
countered two to three full variants, with the remaining levels
shown in their minimal form. This variation allowed us to
study how environmental complexity influences goal creation.

Participants followed a structured protocol for each level
designed to capture both their creative process and formal goal

Figure 1: Experiment environment. Left: Our game environment,
showing the main ball to be shot (colored blue), an example trajectory
(blue ball positions) for a shot (red arrow), alongside several other
objects. Right A form prompting the participant to create, describe,
and specify a goal for this level. Our experiment is available online.

specifications. First, they explored the level for at least 30
seconds, making at least three practice shots to understand
the level’s dynamics. They then created their goal by pro-
viding both a natural language description and by assigning
specific point values to different achievement conditions (see
form in Figure 1, right). Participants also predicted the dif-
ficulty of their goal on a 5-point Likert scale. Finally, they
demonstrated their goal through at least six recorded attempts,
self-scoring each demonstration and optionally providing ex-
planatory notes. After completing their demonstrations, partic-
ipants reassessed their goal’s difficulty, providing insight into
how their understanding evolved through actual attempts.

Experimental Design Constraints and Data Collection.
We placed two constraints on the games participants created:

that they be objectively measurable, and reasonably achiev-
able. These constraints helped ensure goals could be formally
represented in our computational framework while remaining
intuitive and engaging for participants. To enable analysis of
goal creation and achievement, we collected data at multiple
levels of abstraction. For each goal, we recorded natural lan-
guage descriptions, structured point assignments for different
achievement conditions, and difficulty ratings before and af-
ter demonstration attempts. The scoring system served as a
bridge between participants’ intuitive goal conceptualization
and formal reward-producing program specifications. We also
captured detailed behavioral data: the magnitude and direc-
tion of every shot throughout the experiment, self-assigned
scores for demonstration attempts, optional explanatory notes,
and complete state traces of the physics simulation. This rich
dataset enables a high-level analysis of goal creation patterns
and detailed validation of our formal goal representations.

Participants. We contacted 135 participants through Pro-
lific (Palan and Schitter, 2018), of which 107 consented to
the study and submitted data on one or more goals. We paid
participants a base rate of $8 (roughly $15/hour) with a bonus
of $3. We exclude data from 20 participants who made no
meaningful attempt to conform to the instructions. Accounting
for three participants for whom we only have partial data due
to technical difficulties, we arrived at a dataset of 394 goals.

https://starlit-rugelach-18ba52.netlify.app/


First Example Goal
“land the ball inside grey basket, bonus points for breaking the boxes” 
• 10: land ball inside basket
• 2: break single box

Second Example Goal
“Elevate the ball over the conveyor and into the bin” 
• 5: Elevate the ball over conveyors without hitting the portal
• 10: Successfully landing the ball into the top bin
• -5: Hitting the portal

Figure 2: Example goals and program translations. These goals were created by different participants in our experiment. Left: The
participant created this goal for the level on the left. They specified two conditions, each mapping to a preference, one checking the terminal
conditions (ball in bin, using the at−end operator) and one at any point in flight (box destroyed, using the once operator). Right: The
participant created this goal for the level on the right. The constraint about elevating over the conveyors required specifying a set of temporal
conditions (under the preference (elevate over conveyors no portal, using the then operator).

Goal Programs
Program Semantics. We follow Davidson et al. (2022,
2025) in representing participant-generated goals as reward-
producing programs. While our set of primitives may not
perfectly match the cognitive primitives people use, we are
able to approximately model the generative capacity our partic-
ipants demonstrate. The goal programs capture the semantics
of the goals participants created, mapping from observed out-
comes after launching the ball to a (scalar) signal of success
toward the specified goal. To execute these programs, we
construct an interpreter that parses a program in our domain-
specific language (DSL), evaluates it in the context of a shot
trajectory, and returns a number indicating success on this
goal. We operationalize this success signal as the point-based
conditions participants specify, which we then use (with their
goal demonstrations) to verify that we correctly grounded their
descriptions in the correct semantics (see “goal to program
translation”). We use a version of Davidson et al.’s (2025)
PDDL-inspired (Ghallab et al., 1998) DSL, streamlined and
adapted to our environment. We now describe key aspects of
the grammar (and see Figure 2 for goal program examples).

Preferences. Preferences capture the what and how of the
goals — elements that need to be tracked to assess whether or
not a goal has been achieved and, if so, how successfully. Each
preference (e.g., ball in bin in Figure 2, left) has a name by
which it is referred to in scoring expressions and optionally
quantifies one or more variables. Preference bodies take one of
the following forms, each corresponding to a different category
of temporal condition. The once operator (e.g., ball portal
in Figure 2, right) defines a preference that checks for condi-

tions that are true at any point in time once the ball is in flight.
The at−end operator (e.g., ball bin in Figure 2, right) cap-
tures preferences whose conditions must be met at the end of
the shot when all objects have settled. Finally, the then opera-
tor (e.g., elevate over conveyors no portal in Figure 2,
right) captures a sequence of conditions that must be true fol-
lowing the ball being launched (which are homologous to lin-
ear temporal logic modals; Manna and Pnueli, 1992). Within
an operator (or a modal under a then operator), conditions are
defined as first-order logic expressions over predicates.

Scoring. The scoring section maps preferences to the sig-
nal of success toward goal achievement. Scoring expressions
center around enumerating preference satisfactions using the
following counting operators: The count−once operator cap-
tures whether or not a preference was satisfied (returning zero
if it was not and one if it was). The count−once−per−objects
operator counts each unique set of objects that satisfy a pref-
erence, and the count operator measures the total number of
times a preference was satisfied. These counts are combined
using arithmetic expressions (to assign different values to dif-
ferent preferences), logical expressions (to condition on the
number of satisfactions), and a maximization operator.

Goal to Program Translation. Applying Language of
Thought models to study participant-created artifacts re-
quires mapping from the form participants provide (often
natural language) to expressions in the domain-specific lan-
guage of choice. This arduous step can introduce a non-
negligible degree of subjectivity. To alleviate this bur-
den, we created a pipeline to automate a first pass at map-
ping natural language to program semantics, using a fron-



tier LLM (gemini-2.0-flash-thinking-exp), a grammar
parser, and the participant-provided demonstrations. Our
pipeline is an example of the ‘word model to world model’
framework (Wong et al., 2023). The authors checked and
(where required) corrected the pipeline-generated translations.
We intend to open-source this pipeline with our dataset.

Goal Dataset Analyses
We offer preliminary analyses of our dataset. We simulate goal
reward landscapes using our goal program interpreter, extract
metrics from the geometry of reward distributions, and analyze
the relationship between them and variables of interest.

Feature Description. We devised several metrics to analyze
participant games, capturing program structure and reward
landscape characteristics. We measured program complexity
through the number of defined preferences and the number of
nodes in its syntax tree. To characterize reward distributions,
we computed the coverage of positive and maximum scores
across the action space (shot power ∈ 1%−100%, shot angle
∈ 0◦− 359◦, both in integer steps). We also devised a risk
score that captures sensitivity to small action perturbations.
We calculate this risk score by examining the relative drop in
performance between the peak action reward and the average
reward of its 5x5 neighborhood in action space (varying power
by ±2% and angle by ±2◦). We capture participant behavior
through their mean and max scores across their demonstrations
and the average distance between demonstrated actions. We
also analyze participant self-reported difficulty scores.

Key Findings. Our analysis revealed several interesting
relationships between game design, player performance, and
perceived difficulty: Participants are sensitive to goals re-
quiring precision. Participants’ post-gameplay difficulty as-
sessments (but not pre-gameplay) showed positive correla-
tion (r = 0.22, p = 10−3) with reward sensitivity but negative
correlation with demonstration mean and max performance
(r = −0.26, p < 10−5 and r = −0.28, p < 10−6). Program
complexity predicts reward variability: Program complex-
ity, measured by the number of preferences and syntax tree
nodes, was associated with a broader range of achievable re-
ward values (r = 0.50, p < 10−10 and r = 0.39, p < 10−10)
and a higher proportion of positively rewarding actions (r =
0.22, p < 10−4 and r = 0.18, p < 10−3).This suggests addi-
tional preferences are often used to introduce possible bonuses
and minor objectives. Risk scores capture demonstration diffi-
culty. Higher risk scores, corresponding an increased presence
of brittle solutions, show negative correlations with perfor-
mance (demonstration mean: r = −0.52, p < 10−10; max:
r =−0.42, p < 10−10). Positive reward clusters and coverage
trade off. Created goals tend to either have few large reward
regions or many small ones, as seen by a strong negative cor-
relation between the number of positive reward clusters and
the overall positive space coverage (r =−0.56, p < 10−10).

Goal Inference
To demonstrate the usefulness of these goal program repre-
sentations, we offer a proof-of-concept goal inference method

through reward-producing programs, visualized in Figure 3.
We presently eschew the complexity of the full, open-ended
goal-inference problem, and instead formulate the task as a
N-alternative forced choice problem: given a set of goals and
the demonstrations provided by a participant for one of them,
can we predict which goal yielded these demonstrations?

Data. We excluded goals with fewer than six demonstra-
tions (the minimum we asked participants to record) and those
with zero or one non-zero scores. Otherwise, we do not filter
for how successfully the participants demonstrated various or
optimal outcomes in their goal. This yields a dataset of 354 of
the original 394 goals, and their corresponding demonstrations,
where each demonstration includes the power (1%-100%) and
the angle (0◦−359◦) of the shot, both discretized to integers.

Setup. We follow a Bayesian approach to this problem.
We are given a set of N goals {g1,g2, · · · ,gN},gi ∈ G and a
set of M ball shot demonstrations consisting of a power and
angle, D = {d1,d2, · · · ,dM}. We wish to infer the most likely
goal given these demonstrations, maxgi P(gi | D). By Bayes’
theorem, P(gi | D) = P(D|gi)p(gi)

P(D) ∝ P(D | gi) (we currently do
not set a prior over goals, and leave that for future work to con-
sider). If we assume the demonstrations are conditionally inde-
pendent given a goal, we can factor P(D | gi)=∏

M
j=1 P(d j | gi),

that is, the probabilities of each action under the goal.
Policy. We compute a ground-truth goal-conditioned policy

by enumerating over all shot strengths and angles. We evaluate
the score under the goal (using our interpreter and simulation)
for each possible shot to compute each goal’s full action-value
table (in reinforcement learning parlance, Q-values). Next, we
normalize the Q-value table (computing action advantages).
We then smooth the table by convolving it with a Gaussian
kernel with hyperparameters k (the kernel size) and σ (the
standard deviation). We do so to capture an intuition of having
a sense that a shot was close, allowing credit sharing between
an accurate shot and its nearby neighbors. Finally, we convert
these smoothened values to a policy by applying a softmax
with temperature T , our third and final hyperparameter.

Hyperparameter Optimization. We fit hyperparameters
by optimizing the negative log-likelihoods logP(d j | gi) for
each goal with its corresponding demonstrations. Our overall
objective is the grand mean of negative log-likelihoods over
demonstrations and goals, L = − 1

G ∑
G
i=1

1
|Di| ∑

Mi
j=1 logP(d j |

gi), where G is the total number of goals and Di is the demon-
stration set for goal gi. We perform Bayesian hyperparameter
optimization using optuna (Akiba et al., 2019). We hold out
15% (53/354) goals to evaluate our hyperparameter optimiza-
tion procedure, holding out from each level proportionally.

Inference. We seek maxgi P(gi |D) =maxgi logP(gi |D) =

∑
M
j=1 logP(d j | gi). We compute the right-hand quantity, the

sum of action log probabilities, using the distributions induced
with the fitter hyperparameters, and predict the goal with the
largest sum of log-likelihoods over the demonstrations.

Results. Our hyperparameter optimization procedure
yielded a Gaussian kernel of size k = 23 with σ = 0.951 and
a softmax temperature T = 1.243. The mean negative log-



Goal 1
“Elevate the ball over the conveyor and into 
the bin” 
• 5: Elevate the ball over conveyors without 
hitting the portal
• 10: Successfully landing the ball into the 
top bin
• -5: Hitting the portal

Goal 3
“Put the ball in any of the crates by 
bouncing in at least 1 object or portal.” 
• 10: Ball in crate

Goal 4
“Get the ball into one of the bins or touch 
every conveyor belt” 
• 5: ball in one of the bins
• 8: touch every conveyor belt

a

b

c

d

e

Goal 2
“Land in the bin via at both portals”  
• 5: land in bin

Figure 3: Goals and goal inference visualization. We set up our goal inference problem as N-alternative forced choice: given a set of goals
(visualized for N = 4) and demonstrations provided by the participant who created one of them, which goal yielded these demonstrations? We
visualize the goals and scoring elements as described by the participants in panel a, and the reward-producing programs they map into in panel
b. In panel c, we visualize the trajectories of the six demonstrations provided by the participant (the blue circles represent ball positions, and
the red arrow the direction and strength of each shot, also in the figure titles). In panel d, we plot, in polar coordinates, the Q-values (point
outcomes) for each power and angle of shot. We enumerate all possible ball launches in increments of 1% of the maximal force and 1◦. The
green circles mark the locations of demonstrations visualized in panel c. Finally, in panel e, we plot the log probabilities of the distributions
induced by our method for each goal after normalizing the Q-values, spatially smoothing, and applying a (log-) softmax. Goal 1, whose
demonstrations we use, has the highest likelihood and, therefore, is (accurately) predicted as the goal in this example.
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Goal Inference through Reward-Producing Programs Proof-of-Concept Accuracy

Figure 4: Goal inference through reward-producing programs succeeds substantially above chance. Left: We compare the accuracy of
our goal inference procedure as we increase the number of goals to choose between. In the range evaluated, our approach remains substantially
above chance accuracy. Right: Comparing between N = 4 goals, we compare the accuracy for each level and variation. While we observe
meaningful deviations, all results are above chance accuracy. Error bars indicate the standard errors of the mean.

likelihood on our held out set (Lhold = 9.609) is lower than
on the hyperparameter-optimization set (Lhyper = 9.759). We
take this as evidence we avoided overfitting and proceed to
analyze the entire dataset jointly. For each of the ten level
variations, and each value of N = {2,3, · · · ,8}, we randomly
sampled 200 sets of N goals created for that level. For each
set, we evaluate the goal inference through reward-producing
programs method with each goal’s demonstrations to see if
it predicts the correct goal, making for 200N total trials. Fig-
ure 4 summarizes our results. For every value of N tested, our
method predicts the correct goal substantially above chance
accuracy (Figure 4, left). We see meaningful variation in
accuracy between the different levels, albeit with all levels
remaining above chance accuracy. We hypothesize this arises
from the variation in goals created in each given level, an anal-
ysis we aim to pursue in future work. Visualizing the method’s
steps in Figure 3, we observe that the raw Q-values (top row)
are rather noisy; adjacent values often differ drastically. This
motivated the intermediate smoothing step before applying the
softmax to arrive at the policies depicted in the bottom row.

Discussion

We demonstrate a proof of concept for a novel goal inference
algorithm leveraging structured program representations to per-
form inverse reinforcement learning. Our method implements
a simple approach to using the rich information provided by
the reward-producing programs, and even this succeeds above
chance level in every evaluation we devised; on the other hand,
it is far from perfect and admits opportunities to improve it
in future work. To study goal inference, we collected a rich
dataset of almost 400 user-generated goals and demonstrations
in a novel physics environment. Our dataset highlights insights
into goal creation: participants generated contextually appro-
priate goals that leveraged available interactions, with varying
complexity and reward structures, demonstrating systematic
relationships between goal properties and perceived difficulty.

A key advantage of our experimental design is the ability
to enumerate the entire action space for each goal. This en-
ables us to compute detailed reward landscape features that
are intractable in more complex environments. Future work

could build on this by integrating our goal analysis with cogni-
tive models of intuitive physics (Allen et al., 2020), allowing
“simulation-in-the-loop” approaches to goal generation and un-
derstanding. This could help bridge the gap between symbolic
goal representations and grounded physical understanding.

The success of our proof-of-concept goal inference system
suggests promising directions for future development. Though
our participants are far from perfect, the model currently as-
sumes demonstrations are meant to be optimal; people might
offer imprecise or pedagogical demonstrations, intentionally
showing a range of outcomes. Future work could address these
by incorporating models of bounded rationality and pedagog-
ical reasoning. We currently tackle a limited, N-alternative
forced-choice goal inference problem. Future work should ex-
plore open-ended goal program synthesis from demonstrations,
using learned priors from our dataset and flexible generative
models (Davidson et al., 2025; Todd et al., 2024).

Our formal representations of goals as reward-producing
programs have potential applications beyond cognitive model-
ing. They could inform the development of autotelic AI sys-
tems capable of open-ended learning through self-generated
goals (Colas et al., 2022). From a developmental perspective,
our work raises intriguing questions about how humans ac-
quire and refine their “language of goals.” How do children
learn to compose basic goal primitives into more complex
objectives? How does this capability interact with developing
physical understanding and causal reasoning? Our experimen-
tal paradigm and formal framework could provide tools for
investigating these questions empirically. Furthermore, our
choice to focus on objectively scoreable goals raises is ex-
perimentally useful but may limit the applicability of these
approaches. Naturally occurring human goals often involve
subjective or fuzzy success criteria. Future work could extend
these formal goal representations to capture more open-ended
objectives while striving to maintain analytical tractability.

These directions highlight the broader potential of studying
goal creation as a window into human cognition and artificial
intelligence. By formalizing and analyzing this fundamental
capability, we can better understand both human learning and
potential paths toward more capable AI systems.
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