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Abstract

A central question in cognitive science is the degree to which
human and animal brains have adapted to and internalized the
physical laws that govern the motion of objects. In this project,
we propose a new method to estimate aspects of our intuitive
sense of physical laws. Rather than assuming that humans in-
ternalize the form of Newtonian physics as found on Earth,
we instead designed a procedure which allowed us to estimate
which forms of physical laws feel most natural and intuitive
to human participants. Our approach combines Markov chain
Monte Carlo with People (MCMCP) and a custom parame-
terized physics engine. Each proposal of the MCMCP chain
instantiated a world with new physical parameters and par-
ticipants judged which of two scenes seemed more natural.
Preliminary results show that this approach can quantify the
precision of people’s estimate of the direction and strength of
gravity.
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Introduction
The study of intuitive physics is concerned with people’s ev-
eryday knowledge of how objects in the world move and in-
teract. One key question has been the degree to which hu-
man and animal brains have adapted to and internalized the
physical laws that govern the dynamics of objects. Under one
influential account, humans possess a core reasoning engine
which roughly implements Newtonian mechanics along with
probabilistic noise. This theory, known as the noisy Newton
model (Sanborn, Mansinghka, & Griffiths, 2009; Gersten-
berg, Goodman, Lagnado, & Tenenbaum, 2012), holds that
people have evolved or learned an accurate (if implicit) model
of forces, collision dynamics, gravity, etc., but that errors in
perceptual input and internal representation lead to the some-
times imperfect pattern of human performance (Smith & Vul,
2013; Sanborn, Mansinghka, & Griffiths, 2013; Kominsky et
al., 2017). Even seemingly foundational errors, such as log-
ical inconsistencies in trajectory estimation (Ludwin-Peery,
Bramley, Davis, & Gureckis, 2021), can be accounted for
with algorithmic simplifications and shortcuts in the mind’s
Newtonian physics engine (Ullman, Spelke, Battaglia, &
Tenenbaum, 2017; Bass, Smith, Bonawitz, & Ullman, 2021).

However, Newtonian physics, and particularly the para-
metric instantiation of those rules as experienced on Earth
(e.g., F = ma, g ≈ 9.81m/s2), represent just one of the pos-
sible sets of physical laws. For example, people are familiar
with video games that use unrealistic and artificial dynamics

to make playing them more fun, and astronauts adapt quickly
to life in microgravity (though not perfectly, see McIntyre,
Zago, Berthoz, & Lacquaniti, 2001). Viewed more broadly,
there is in fact a universe of possible alternative physics (a
point of some concern to cosmology and philosophy, Carr &
Rees, 1979; Barrow & Tipler, 1986). For example, while in
our universe force F is equal to mass times acceleration (the
second derivative of position), psychologically it is possible
that it is equal to mass times velocity (F = mv) or that the
gravitational constant g has a different value.

In this project, we propose a new method to estimate as-
pects of our intuitive sense of physical laws. Rather than
assuming that humans internalize the ground-truth laws of
Newtonian physics on Earth, we instead designed a procedure
which allows us to estimate which form of physical laws feels
more natural and intuitive to human participants. We did this
by writing a custom physics engine in which we could “tin-
ker” with the laws of physics. The custom physics engine can
express a wide range of possible physics, many of which dif-
fer from the ones we experience on Earth in both parametric
and functional form. We then elicited from participants judg-
ments of which physical laws seemed most natural or correct.
Our preliminary experiments with this method show promise,
allowing us to estimate the “psychologically correct” form of
various physical laws. After showcasing three experiments
using the method, we lay out future directions and implica-
tions.

Estimating people’s intuitive laws of physics using
MCMC with People
In Markov chain Monte Carlo with People (MCMCP; intro-
duced by Sanborn & Griffiths, 2007), participants repeatedly
choose between two candidate stimuli that vary on some di-
mensions of interest. In a typical experiment, these might
be two members of some category (e.g., apple) with the task
of selecting which is a better example of that category (e.g.,
the rounder, redder one). Behind the scenes, these stim-
uli implement Markov chain Monte Carlo estimation: one
of the options is the current state and the other is the pro-
posal. Whichever is chosen becomes the state for the next
trial. If the proposals are drawn from a suitably symmetric
distribution—and with some reasonable assumptions about
people’s decision rules—these repeated selections serve as a
valid acceptance function for ordinary Markov chain Monte



Figure 1: The task as seen by participants.

Carlo sampling. The values of the chain (after it has had time
to settle) can therefore be interpreted as approximate sam-
ples of participants’ internal representations of the relevant
dimensions. This technique has been influential in studies of
category representations (Hsu, Martin, Sanborn, & Griffiths,
2012; León-Villagrá, Otsubo, Lucas, & Buchsbaum, 2020),
and, more relevant to the present work, has been used to eval-
uate people’s perception of relative object mass in elastic col-
lisions (Cohen & Ross, 2009).

In our experiments, the stimuli were animated videos of
physical scenes with objects falling, bouncing, and collid-
ing with each other, and participants selected which anima-
tion looked more natural. Although some research on in-
tuitive physics has people reason about videos of real-life
objects moving on Earth (Hood, 1995; Stahl & Feigenson,
2015; Little & Gureckis, 2024), it is increasingly popular to
render videos of scenes using off the shelf computer graph-
ics systems endowed with physics engines which are gener-
ally designed to be accurate (Todorov, Erez, & Tassa, 2012;
Battaglia, Hamrick, & Tenenbaum, 2013; de Avila Belbute-
Peres, Smith, Allen, Tenenbaum, & Kolter, 2018). Instead, in
our work we developed a simple physics engine which was
continuously parameterized in several ways (see below). As
a result each proposal of our MCMC chain resulted in a new
physics engine instantiation which was parameterized with
different physical laws. Participants’ choices then reflected
their assessment of which physics seemed more “natural” to
them between two alternatives. By randomizing the scene de-
tails (the initial positions and quantities of objects) our chains
average over incidental aspects of any particular situation and
expose which physics engine settings feel most natural, on
average.

To validate our approach, our MCMC chains manipulated
two physical constants: the direction of gravitational acceler-
ation in Experiment 1, and the magnitude of gravitational ac-
celeration in Experiments 2 and 3. In this way we could test a
range of variables—including highly unrealistic ones—to es-
timate the shape of people’s internal representations of these
physical constants.

Experiment 1: Estimating gravity direction
On Earth, dropped objects fall directly downward1, and peo-
ple can reliably tell which direction that is, especially in built
environments with many verticality cues (Haji-Khamneh &
Harris, 2010). This made estimating the direction of gravity
a straightforward validation of our procedure. We expected
people to notice when the simulated gravity in our scenes did
not point straight down, and the resulting distribution of nat-
ural gravity directions to be narrow and centered at zero de-
grees from vertical.

Method
Participants We recruited 50 English-speaking adult par-
ticipants from Prolific and paid them each $8.05 for partici-
pating in the experiment, which took approximately 32 min-
utes (for target pay rate of $15/hr). Participants were ex-
cluded from our analyses if they did not complete the task
and correctly answer 5 catch trials (which contrasted a nor-
mal bounce with a ball that slowly levitated while spinning
rapidly). Participants were also excluded if they selected one
of the videos more than 70% of the time or if their chains did
not cross within the first 20 trials2, leaving N=30.

Stimuli Participants watched animations of idealized balls
falling and colliding with each other or with flat surfaces
(see Figure 1). A demo of the task is available at https://
exps.gureckislab.org/e/roll-perpetual-sock. Each
trial had a 50% chance of featuring one ball and a 50% chance
of two. The starting positions of the balls were sampled uni-
formly on each trial from a rectangular space above a ramp
toward which they would fall and bounce (on trials with two
balls, their positions were sampled from non-overlapping re-
gions). The ramp angle was sampled uniformly on each trial
from the range [-11.5°, 11.5°] from horizontal. The balls
began each video with zero initial velocity but immediately
began to fall downward—the motion of the balls was deter-
mined by a basic custom physics engine that used well-known
simplifications for rigid body dynamics (Whittaker, 1904, pp.
231-232; Mirtich & Canny, 1995). This allowed the physical
constants governing the animations to be set to arbitrary (and
even impossible) values.

The starting positions of the balls and ramp were random
on each trial but shared for the two animations on that trial.
The only difference between the videos was the direction of
gravity, which was controlled by the MCMC procedure. We

1Or at least very close to it: the presence of mountains does cause
some variation in the local direction of gravity (known as vertical
deflection), but it doesn’t exceed 0.04° on Earth (Hirt et al., 2013).

2While sophisticated methods exist for evaluating the quality and
convergence of MCMC chains (Vehtari, Gelman, Simpson, Carpen-
ter, & Bürkner, 2021), we were limited in the length of chains that
could practically be acquired with humans in the loop. A pilot exper-
iment showed that the majority of participants’ chains had crossed
(a simple heuristic for establishing convergence; Sanborn & Grif-
fiths, 2007) after 20 pairs of trials. For simplicity, we excluded any
participants whose chains had not crossed within 20 pairs of trials,
and excluded the first 20 pairs of trials as burn-in for all those who
remained. This left 30 pairs of trials for each included participant.

https://exps.gureckislab.org/e/roll-perpetual-sock
https://exps.gureckislab.org/e/roll-perpetual-sock


used two alternating chains, so that the even numbered trials
established the values for one chain and the odd numbered
trials the other (this order was selected at random for each
participant). On the first trial for each chain, the current state
was one of the two initial chain values (-11.5° and 22.9°from
vertical3), and the proposal was drawn from a wrapped nor-
mal distribution with mean equal to the current state and stan-
dard deviation of 9.2°. On each subsequent trial, the current
state was the chosen proposal distribution was the same. For
all trials, the left/right positions of the proposal and current
state were decided at random.

The balls themselves were represented with a textured im-
ages meant to evoke larger sports balls like kickballs or bas-
ketballs with a diameter of approximately 25 cm. This styling
was intended to provide a sense of scale, since previous work
has shown that people more accurately estimate ballistic tra-
jectories when they’re displayed in a rich visual scene with
cues to spatial scale (Miller et al., 2008). The other scene
parameters (coefficient of restitution, moment of inertia, air
drag, friction, etc.) were set to be compatible with the real-
world properties of this kind of ball (Maynes, Compton, &
Baker, 2005).

Task Participants watched the videos and selected the one
they thought looked more natural (see Figure 1). Moving
their cursor into either of the two square video frames would
start the corresponding animation (which would stop when
the cursor left the frame). While one animation played, the
progress bar beneath it would fill, and when both bars were
full the two buttons below would be enabled, allowing the
participant to make their selection and advance to the next
trial. Each progress bar took four seconds to fill, and the an-
imations restarted after two seconds, so participants had to
watch each animation at least twice. Although this enforced
a minimum viewing time, subjects were free to look at each
video for longer if they wanted.

Results and discussion
Figure 2 shows example chains of participant responses, and
Figure 3 shows estimates of the resulting distributions. The
distributions from the higher and lower chains are similar
(means: -0.8 and 4.6, medians: -1.8 and 2.1, standard devia-
tions: 13.1 and 14.0, 95% HDIs of means: [-19.9, 32.0] and
[-23.0, 29.4]), and centered closer to the physically correct
value (0°) than their starting values. Ideally, samples from
MCMC chains should be independent of their starting values,
which was not quite the case here (the values from the chain
that started lower were slightly lower overall). Nevertheless,
we considered the chains to have enough overlap to provide
reasonable estimates of participants’ internal representations,
so for this and future experiments the values from both chains
were taken together as a single distribution (here, mean: 1.92,

3Or -0.2 and 0.4 radians. These values are asymmetric so that
their average is different from zero, preventing participants from an-
swering correctly by averaging the stimuli they see across the two
chains.

Figure 2: Lower chain values (solid line) and higher chain
values (dotted line) from the first five included participants,
along with the start points for each chain (lighter dashed
lines), and physically correct value (lighter solid line).

median: 0.14, standard deviation 13.8, 95% HDI of mean: [-
23.2, 29.2]).

The distributions in Figure 3 are tightly clustered around
zero, as expected. One way to evaluate human performance
is to consider each trial as having had a correct answer:
whichever of the two stimuli (the current state or the pro-
posal) had a gravity direction closer to directly downward. On
this measure, all participants performed above chance (range:
[56%, 85%], mean: 68.3%, median: 66%). Another way is
consider an alternative where participants simply chose the
video on the left or right with 50% probability. Since each
trial would then have a 50% chance of accepting the proposal
distribution, which itself is approximately normal, the chain
values would be expected to follow a distribution with mean
equal to the starting value and standard deviation σc equal to
σp

√
N/2, where σp is the standard deviation of the proposal

distribution and N is the number of trials in each chain. The
expected value or the minimum and maximum value across
both chains would then be σc below the lower chain starting
value and σc above the higher chain starting value. To allow
easy visual comparison of the empirical distributions across
experiments and to the range expected by chance, the x-axis
values for Figure 3 and Figure 4 are set to these minimum and
maximum values.

These results serve to validate the use of MCMCP for es-
timating physical parameters—where chance behavior would
have led to wide distributions, participants instead showed
precise and accurate knowledge of the way things fall. Hav-
ing confirmed that our method can produce reliable estimates
for physical parameters that people know well, we can now
evaluate behavior for parameters that people may represent
less precisely.



Figure 3: Kernel density estimates from the last 30 trials of all
participants in Experiment 1 (each shaded region represents
one participant’s data), start points for each chain (dashed
lines), physically correct value (solid line), along with ag-
gregate summaries of all the included chain values: a kernel
density estimate (upper row and lower left) and a Gaussian fit
(lower right). The left column treats each participant’s lower
and higher chains separately, while the right column com-
bines the two chains for each participant. For ease of com-
parison with Figure 4, all x-axis limits are the expected max-
imum and minimum chain values if participants had made
their selections at random.

Experiment 2: Estimating gravity strength
There is a substantial literature on the question of whether
people have a stable internal model of gravity, as we might
use for everyday motor behaviors like catching thrown ob-
jects, with substantial evidence to support it (McIntyre et
al., 2001; Zago et al., 2004; La Scaleia, Zago, & Lac-
quaniti, 2015; Jörges & López-Moliner, 2017), but also rea-
sons to doubt its precision (Baurès, Benguigui, Amorim, &
Siegler, 2007), including systematic biases in expected be-
havior of pendulums (Bozzi, 1958; Pittenger, 1990; Frick,
Huber, Reips, & Krist, 2005) and falling objects (Vicovaro,
Noventa, & Battaglini, 2019; Gravano, Zago, & Lacquaniti,
2017). Here, we applied our MCMCP approach to this ques-
tion to test participants’ sensitivity to unrealistic gravity.

Method
All methodological details for Experiment 2 were identical to
those of Experiment 1 except where noted.

Participants We recruited another 50 adults from Prolific
and applied the same exclusion criteria, which left N=35.

Stimuli Videos were the same as those used in Experiment
1 except that the direction of gravity was now fixed at 0° (di-
rectly downward) and instead the magnitude of gravitational
acceleration varied between the two videos on each trial. The
two chains were started at 4.3 and 14.9 meters per squared

Figure 4: Kernel density estimates from the last 30 trials of
all participants in Experiment 2 (shaded regions), start points
for each chain (dashed lines), physically correct value (solid
line), and summaries: kernel density estimate (left) and Gaus-
sian fit (right). As in Figure 3, the x-axis limits are the ex-
pected minimum and maximum values if participants selected
at random.

second (m/s2), whereas gravitational acceleration on Earth is
approximately 9.81 m/s2. The standard deviation of the pro-
posal distribution was 4.3 m/s2.

Results and discussion
The results of Experiment 2 are summarized in Figure 4.
Pooled together, the chain values were in the vicinity of the
correct value of 9.81 m/s2, but with substantial variation
(mean: 16.2, median: 14.5, standard deviation: 8.6, 95%
HDI of mean: [4.2, 36.1]). Directly comparing the results
of Experiments 1 and 2 is difficult because the units of Ex-
periments 1 and 2 are different (it would not be valid, for
example, to say that people are worse at estimating the mag-
nitude of gravitational acceleration than its direction). Never-
theless, the relative widths of the distributions suggest that, in
this experimental setting, participants’ responses were closer
to chance level when estimating the strength of gravity.

A major concern with strongly interpreting these results
as an overestimation of the strength of gravity is that they
could be equivalently explained as an underestimation of the
depicted size of the scene4. A participant who responded in
accordance with the overall median chain value of 14.5 m/s2

could have thought gravity was 50% stronger than it really is,
but could also have simply thought the ball was two-thirds as
big. In the final experiment, we tested this more directly by
manipulating the implied scale of the scene.

Experiment 3: Sensitivity to scale
Because modified gravitational acceleration is the same as
normal gravity with the scale of the scene changed, in Ex-
periment 3 we sought to distinguish inaccurate judgments of

4For example, a marble and a basketball both fall approximately
5 cm in the first 100 ms after being dropped, but for the marble this
is three times its diameter and for a basketball it’s barely one-fifth.
If the marble and basketball are the same size on a video screen, say
100 pixels, then the marble falls 300 px in the same time that the
basketball falls 20 px. Therefore, the marble, being 1/15th the size,
accelerates 15 times faster (in pixel terms).



Figure 5: The scenes used in Experiment 3: Gym (left) and
Desk (right).

natural physical motion from merely imprecise judgments of
scene scale by directly asking participants to report the size
of the ball. We also sought to determine whether participants’
judgments were well-calibrated to the implied scale of the
scene by having two different scene conditions.

Method
All methodological details for Experiment 3 were identical to
those of Experiments 1 and 2 except where noted.

Participants We recruited another 40 adults from Prolific
and applied the same exclusion criteria, leaving N=29.

Stimuli To make the scale and relative position of the ball
easier to interpret, the ramp used in Experiments 1 and 2 was
replaced with a slanted table, and more details were added
to the background (see Figure 5). Half of participants were
assigned at random to the gym condition, where the videos
depicted a large ball bouncing in a gym as before (Figure 5,
left) and half were assigned to the desk condition (Figure 5,
right), where the videos depicted a small ball bouncing on
a desktop. Crucially, the balls were the same size in pixels
(radius of 22 px)—that is, regardless of condition, the ball
took up the same amount of space on the screen.

Because participants’ chain values would be scaled by their
size judgments (see following sections), their adjusted start-
ing chain values would also differ. Therefore, we sampled
each of the two chain starts uniformly between 0 and 3.46
pixels/frame2. Note the use of pixel units rather than ab-
solute distance—this is because physically correct motion in
the desk condition involves the ball accelerating faster across
participants’ screens, and therefore the two conditions have
different correct answers in pixel units. To accommodate this
faster apparent motion of the desk condition, the physics en-
gine was modified to more precisely track ball movement be-
tween frames and avoid intersecting surfaces.

Task
In addition to selecting the more natural video, participants
also reported the size of the ball using a slider with 1/4-inch
increments. Other familiar sports balls (e.g., a golf ball, a
tennis ball, etc.) were depicted to scale and with their di-
mensions visible so participants would have a clear reference
when making their size judgments.

Figure 6: Kernel density estimates from the last 30 trials of
all participants of Experiment 3 (shaded regions, colored by
condition), correct answers for each condition (vertical lines),
physically correct value (solid line), and summary kernel den-
sity estimate for each condition. Values are scaled to account
for differences in inferred scene scale (see Results and dis-
cussion).

Results and discussion
We first used the mean of the size judgments for each condi-
tion to determine the implied scale and correct gravitational
acceleration for each condition. Because participants varied
in their judgments of the size of the scene, we scaled each
participant’s responses to account for the difference between
their judgment and the mean value for their condition. For
example, the mean ball size for the gym condition was 9.25
inches. If a given participant thought the ball was half that
size, they would presumably have preferred videos where the
gravity (in pixel units) was twice as strong, so their chain val-
ues would all be multiplied by one-half to account for that.
This allowed us to fairly evaluate the accuracy of participants’
gravity judgments, as distinct from any limitations in infer-
ring the scale of the scene.

These adjusted chain values are summarized in Figure 6.
The qualitative pattern from Experiment 2 was repeated.
For the gym condition, where the correct value was 0.51
pixels/frame2, the pooled chain values had mean: 2.30, me-
dian: 1.43, standard deviation: 2.5, 95% HDI of mean: [0.13,
6.75]. For the desk condition, where the correct value was
1.47 pixels/frame2, the pooled chain values had mean: 2.60,
median: 2.36, standard deviation: 1.7, 95% HDI of mean:
[0.43, 5.66]. Chain values were larger for the desk condition
on average (95% HDI of mean difference, desk minus gym:
[0.29, 0.33]), as accurate physics estimation would require,
suggesting that participants’ naturalness judgments, while not
very precise, were at least sensitive to the scene scale manip-
ulation.

It is worth noting that our results here differ from those of
other experiments (e.g., Vicovaro et al., 2019; Gravano et al.,
2017) finding that people underestimate the strength of grav-
ity, i.e., they expect things to fall more slowly than they do
in reality (at least for small objects; Bozzi, 1958). Partici-
pants in this task were, if anything, more likely to overesti-
mate (though not robustly: the 95% HDIs for both conditions
included a range of values below the correct gravitational ac-



celerations).

General discussion
In this report, we describe a novel method for estimating peo-
ple’s intuitive physical laws. Our approach combines MCMC
with People (MCMCP) and a custom physics engine which
can instantiate a wide range of physical laws. We conducted
three experiments assessing the viability of this approach,
including estimating both obvious and slightly less obvious
laws and properties. We view these experiments as prelimi-
nary demonstrations of what can be done with this method.
In future work we hope to explore even more alien regimes of
the universe of possible physics.

One unique feature of our experiments is that perturbations
to the underlying physics made on each trial were small, and
occurred while relatively large changes to the scene details
occurred across successive trials (the number of balls, their
initial positions, and the angle of the ramp). Subjectively, this
had the effect of weakening the utility of any single heuristic
that could be used on every trial, potentially forcing partici-
pants to form a more general impression of the videos’ over-
all physical naturalness. Future experiments will investigate
whether participants indeed are less likely to rely on scene-
specific heuristics—if so, this method would be well suited to
elicit intuitive judgments about general physical laws quickly
and efficiently.

One important question is how important the MCMCP pro-
cedure is for our conclusions. For example, another approach
could be to allow participants to watch a single video playing
in a loop and adjust a slider to change the underlying physics
until they seem natural (Harrison et al., 2020). We aim to
run such a comparison in the future, but we also believe the
MCMCP procedure has some distinct advantages, including
providing implicit estimates of the uncertainty in the target
distribution (which may reflect some combination of percep-
tual limitations and cognitive uncertainty). These inferred
distributions can then be reused in computational models. For
example, models that include estimates of error in predicting
object motion and interactions (e.g., Gerstenberg, Goodman,
Lagnado, & Tenenbaum, 2021) could be built on more pre-
cise foundations. Even animators and video game designers
might benefit from a better understanding of the acceptable
range of imprecision when creating complex and computa-
tionally expensive animations (O’Sullivan, Dingliana, Giang,
& Kaiser, 2003; Yeh, Reinman, Patel, & Faloutsos, 2009).

Finally, our results primarily assess physical laws through
observation. However, different response paradigms might
probe different internal representations (Zago & Lacquaniti,
2005; Smith, Battaglia, & Vul, 2018). For example, catch-
ing a ball is thought to tap into different mental resources
than judging the naturalness of its trajectory, which itself may
rely on different processes than explicitly drawing the shape
of its arc (Kozhevnikov & Hegarty, 2001; Smith, Battaglia,
& Vul, 2013). Our approach, therefore, can only reveal the
areas of unnatural physics that seem natural when observed

(Kaiser, Proffitt, & Anderson, 1985), not those that feel natu-
ral to physically experience (Won, Gross, & Firestone, 2021)
or are intuitive when reasoned about explicitly (McCloskey,
Caramazza, & Green, 1980). However, future work might be
able to extend this to limited forms of active control (Bramley,
Gerstenberg, Tenenbaum, & Gureckis, 2018).
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