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OPEN ' The “Naturalistic Free Recall”
patapescripTor  dataset: four stories, hundreds
of participants, and high-fidelity
transcriptions

Omri Raccah¥®™, Phoebe Chen*¢>, Todd M. Gureckis?, David Poeppel ®%*3* & Vy A. Vo(®?

The “Naturalistic Free Recall” dataset provides transcribed verbal recollections of four spoken narratives
collected from 229 participants. Each participant listened to two stories, varying in duration from
approximately 8 to 13 minutes, recorded by different speakers. Subsequently, participants were tasked
with verbally recalling the narrative content in as much detail as possible and in the correct order.
The dataset includes high-fidelity, time-stamped text transcripts of both the original narratives and
participants’ recollections. To validate the dataset, we apply a previously published automated method
to score memory performance for narrative content. Using this approach, we extend effects traditionally
observed in classic list-learning paradigms. The analysis of narrative contents and its verbal recollection
presents unique challenges compared to controlled list-learning experiments. To facilitate the use of
these rich data by the community, we offer an overview of recent computational methods that can be
used to annotate and evaluate key properties of narratives and their recollections. Using advancements
in machine learning and natural language processing, these methods can help the community understand
the role of event structure, discourse properties, prediction error, high-level semantic features (e.g.,
idioms, humor), and more. All experimental materials, code, and data are publicly available to facilitate
new advances in understanding human memory.

Background & Summary

Since its inception, the empirical study of human memory has relied on controlled trial-based presentation of
item lists, followed by an assessment of memory performance!=. Despite the empirical utility and significance
of these list-learning paradigms, researchers have increasingly argued for the use of naturalistic paradigms as
a complementary source of evidence to ensure the broader applicability of findings generated under controlled
conditions. This area of memory research primarily uses audiovisual movies and spoken narratives to uncover
the impact of ecologically relevant variables and their interaction on manually annotated or automatically scored
measures of memory performance* 6. This emerging literature has also resulted in a range of computational
tools for annotating narratives and evaluating participant recollections'>!’-1°. Here, we contribute a naturalistic
dataset to advance the study of human memory under ecologically valid conditions. Our work aims to expand
the scope of questions that researchers can answer about human memory by (1) presenting the “Naturalistic Free
Recall” dataset (NFRD), the most comprehensive dataset on human memory for narratives; (2) validating the
use of this dataset for research on human memory by isolating classic signatures of human memory phenomena;
and (3) providing researchers with a preview of methods and questions that can be answered with this type of
data.

The NFRD contains data collected online from hundreds of participants who listened to a spoken narrative
and immediately recalled it in as much detail as possible. Each participant was presented two of the four nar-
rative stimuli included in the NFRD, and performed a spoken recall for at least 4 minutes following each story.
This is intended to mimic real-world conditions for retelling narrative content. The dataset includes (1) text
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transcripts of the four distinct narrative stimuli, (2) professionally reviewed, high-fidelity transcripts of each
verbal recall, and (3) time-stamps for each spoken word in the recall. While numerous studies have examined
memory and perception for naturalistic content, verbal recollection - specifically in the form of storytelling
- remains an understudied natural behavior. The retelling of narratives is a core part of our everyday lives, rep-
resenting a fundamental human capability®. The NFRD provides a framework for studying which elements of
a narratives are retained or forgotten by a listener, as well as how the encoded information is recalled verbally.
We included four different narrative stimuli of a moderate length (average 11.58 minutes) to provide variability
in a variety of stimulus features that may affect memory recall, such as semantic content, narrative structure,
and emotional affect. This enables researchers to test the generalizability of empirical findings across multiple
narrative contexts. Prior memory research has typically relied on data from approximately 20-30 participants
recalling a single narrative or movie clip. In contrast, our dataset provides a substantially larger sample size,
allowing researchers to investigate memory phenomena that may occur less frequently or reliably under natu-
ralistic conditions (e.g., false memory, metacognitive abilities, etc.) The concern regarding low power for rare
variables in naturalistic materials has been previously articulated by Hamilton and Huth?'. Finally, the large
sample size of our dataset allows for an analysis of individual differences in memory for narrative contents
(e.g.,****). For example, this can be achieved by examining the relationship between recall features and factors
such as age, particularly for the oregontrail and baseball narratives in the NFRD, which exhibit a wide distribu-
tion. Furthermore, we administered an open-ended questionnaire on mnemonic strategies that can be leveraged
to investigate individual differences in learning outcomes***>.

To validate the use of the NFRD for human memory research, we replicate well-characterized memory phe-
nomena that have been reported in highly-controlled experimental paradigms. These classic list-learning par-
adigms have demonstrated serial position effects on memory*-?° and temporal contiguity effects>**-**. In line
with this extensive literature, we demonstrate that these signatures of memory recall are also present in the
NERD. This validation analysis relies heavily on previously developed computational approaches to study mem-
ory recall for narrative stimuli'>.

Naturalistic studies of human memory provide us with the opportunity to answer novel questions that
cannot be addressed with paradigms such as list learning. However, generalizing approaches from controlled
experiments to naturalistic narratives introduces substantial conceptual and technical challenges. In traditional
list-learning experiments, discrete items (e.g., words or images) have a clear match to particular items during
recall. In contrast, real-world narratives lack such clarity in the elements that are remembered, and the corre-
spondence between these elements and their recall is dependent on their conveyed meaning. For this reason,
one primary obstacles with this work is the development of analysis tools to annotate the narrative stimuli and
the spoken recall data. We conclude our paper with a concise review and partial application of the latest compu-
tational tools and methods that may be applied to analyze the NFRD. This includes automatic event boundary
detection, a variety of semantic annotation tools, and automated approaches for scoring memory performance
and features of memory recall. Future work may even use the NFRD to develop and validate novel computa-
tional tools for research on human memory.

Methods

Participants. The NFRD was collected from native English speakers who participated in the online study (N
= 229; 145 female; mean g, = 25.03, SD,,, = 11.15). The experiment was conducted across two distinct online
platforms: the SONA Systems platform at New York University (N=167, mean,, = 19.67, SD,,, = 1.33) and
Prolific (www.prolific.com; N=62, mean,,, = 39.77, SD,,, = 12.90). Participants recruited via SONA were NYU
undergraduates who received course credit for their involvement, whereas those recruited through Prolific repre-
sented a broader demographic and received compensation at a rate of $10 an hour. The study was approved by the
local institutional review board (NYU’s Committee on Activities Involving Human Subjects; IRB-FY2016-1357).
Before starting the online experiment, the consent form was presented on the screen and participants indicated
using their keyboard that they agree to participate in the experiment. The consent form also included the follow-
ing statement regarding data sharing: “Information without identifying details may be used in future research or
shared with other researchers without additional consent”

The data were derived from an originally collected participant pool of 291 participants through applying
exclusion criteria to ensure data quality and gender balance. Specifically, 7 participants were excluded due to
self-reported low engagement ratings (lower than or equal to 2 out of a 5-point Likert scale), 4 participants were
excluded for missing age data, and 1 participant was excluded for missing questionnaire data. Additionally, data
from 50 participants were not included in the current dataset due to budget constraints related to audio tran-
scription. When excluding based on budget constraints, we employed a sample stratification strategy in which
participants from non-male gender groups (female or other) were randomly selected, given the smaller num-
ber of male participants initially collected. We anonymized participant information by replacing names with
numerical IDs. The only demographic information we have released is age and gender. Furthermore, we have
not shared the audio recordings themselves to avoid re-identification risks and instead share recall transcripts
with word-level timestamps (see following sections).

Stimuli.  The stimuli comprised four distinct spoken narratives in English. Three of the narratives were sourced
from The Moth Radio Hour podcast series, specifically Pieman, Eyespy, and Oregontrail. The fourth narrative was
the first chapter from the audiobook “Baseball Joe in the Big League” by Lester Chadwick, henceforth referred to as
Baseball. This audiobook chapter was obtained from LibriVox (www.librivox.org). Each narrative was accompanied
by a corresponding text transcript. The text for Pieman was gathered from a previously published neuroimaging
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Stimulus source Speaker gender | Length in words | Length in audio (seconds) | ParticipantN | Participant age range | Participant gender
pieman The Moth Radio Hour | Male 948 489 116 17-29 88 female
eyespy The Moth Radio Hour | Female 2318 779 116 17-29 88 female
oregontrail | The Moth Radio Hour | Female 2389 743 113 18-75 57 female
baseball LibriVox Audio Male 2088 768 113 18-75 57 female

Table 1. Overview of the narrative stimuli and participant demographics.

dataset?, while the text for Baseball was publicly available on Project Gutenberg (www.gutenberg.org). For the
remaining narratives, we followed the procedures outlined in the Speech-to-text Transcriptions section.

On average, each audio clip lasted 11 minutes and 35 seconds, inclusive of the 15 seconds of music preced-
ing "Pieman” and the 15 seconds of silence following it. All other audio clips began and ended promptly. The
narratives contained an average of 1936 words each. A summary of the stimuli and participant demographics is
presented in Table 1.

Task Procedure. The experiment was administered online and programmed using the PsychoPy library®.
Participants were instructed to use headphones or earphones throughout the experiment. After the initial audio
sound check, they listened to the verbal instructions, after which the same instructions were displayed as text on
the screen. Participants were instructed to “recollect the story in as much detail as possible by speaking aloud”
While participants were encouraged to recall the story in the correct order, they were asked to return to any ear-
lier points they might have missed. Participants’ responses for both the experiment and the questionnaire were
collected using either their native computer keyboard or an external keyboard.

Each participant was exposed to 2 out of 4 spoken narratives (Fig. 1). While the presentation order was ran-
domized, the same two stories were consistently paired together (Pieman and Eyespy; Oregontrail and Baseball).
After listening to each audio narrative, participants were immediately prompted to verbally recall the narrative
for a minimum of 4 minutes. A green circle was displayed on the screen for the first four minutes of the record-
ing, after which a yellow circle was displayed. Participants were instructed to recall the entire story but could
only proceed after the circle had turned yellow. The JavaScript code used to present the online experiment,
including the full instruction text and post-task questionnaire, is shared alongside our data repository**.

We encountered occasional data loss due to technical difficulties with the platform or the participant’s hard-
ware setup, such as empty audio recordings, resulting in a loss of recall data for approximately 9.4% of the pre-
sented stories.

Post-task questionnaire. After participants completed the experiment, a questionnaire was administered
to assess participants’ understanding of the task and mnemonic strategies. The first three questions serve to assess
subjects’ understanding and subjective difficulty of the task: “I understood the task instructions”, “I was engaged
in the experiment” and “I found the experiment difficult”. Participants were instructed to provide responses to
statements on a Likert scale, which included five balanced responses (strongly disagree, disagree, neither agree
nor disagree, agree, or strongly agree). Next, participants were asked to provide open responses stating their strat-
egy for memorizing the stories, subjectively memorable moments, and activities during the task. The open-ended
questions were: (a) Did you use a particular strategy to memorize the story? (b) Were there any moments in either
story that you found particularly memorable? If so, please describe them below. (c) Is there anything you think
we should know about your experience taking our experiment? (d) What were you doing while listening to the
stories? These questionnaire responses are included in the dataset.

Speech-to-text transcriptions.  We first utilized the Speech-to-Text API offered by Google Cloud (cloud.
google.com/speech-to-text) to process all audio recordings. This generated a preliminary transcription of the
audio recording, including some punctuation. Next, both the original audio recording and the preliminary tran-
scription were submitted to a commercial transcript correction service (www.transcriptionwing.com). This pro-
cess ensured that each transcript underwent thorough human review and manual correction. Human reviewers
were provided with specific instructions to exclude filler words (e.g., “um’, “oh”) and eliminate word repetitions
(e.g., “and and”). Additionally, they received a list of proper nouns featured in each story to maintain consistent
spelling throughout the transcript. All numerical values were transcribed into words. Although reviewers were
informed that letter case and punctuation were not critical, transcripts were typically returned with proper case
and punctuation.

Text speech alignment. We used the Penn Phonetics Lab Forced Aligner toolkit*” (p2fa) to align the audio
files to words in the transcript. The audio files were first resampled to the optimal sample rate for the algorithm
(11,025 Hz) with SoX v14.4.2 (using the rate effect instead of the deprecated polyphase). The alignment produces
TextGrid?® files that denote the time associated with the start and end of each word in the transcript, as well as
common noises during natural speech (breaths, coughs, laughter, short pauses, etc.) Documentation regarding
the TextGrid format, along with Python code that can be used to extract data from these files is available on the
OSF repository®.

Automated scoring approach. To validate the use of this data to score memory performance for each nar-
rative, we applied a recently published automated method by Heusser and colleagues'?. This method uses a topic
model to extract latent themes (or topics) from the narrative transcript as well as participants’ recollections. These
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a
Audio narrative Verbal Recall Audio narrative Verbal Recall Transcription
7-15 mins >4 mins 7-15 mins >4 mins (Google speech-to-text
@)) ((( O @)) ((( O and professional cleaning)

Eyespy

Baseball

@® Example story event @ Example story event @ Example story event @® Example story event
“... there’s a blur in the corner of “Now all of this meant that no “... and | think they're gonna be “We can't tell much about them in
my eye which becomes this figure one was paying any attention to really annoyed that they got this storm," the station master
holding a cream pie which me and my cousins in the slowed down but they are said. "All our trains are more or
becomes the guy standing next to water” psyched. They got to throw up in less late. Stop in this afternoon,
me mashing a cream pie into ' social studies. ...” and | may have some definite
Dean McGowan’s face. And then information for you.”
runs away.”

@® Example recall - P14 @ Example recall - P24 @® Example recall - P155 @ Example recall - P133
“... the guy sees a blur in the “ .. they’re obsessed with them “but instead of being mad about it “The stationmaster or the guy at
corner of his eye that gets bigger, but that means that they weren't after they drank the fake oil and the train depot says he’s not sure
and all of a sudden, this person watching the three kids. So, it start puking in the game, they because the weather is so horri-
throws a cream pie at the dean’s was the narrator and her two were all really excited about that.” ble.”

face and then runs away.” cousins who are kids and they

were playing in the water.”

Fig. 1 Experimental procedures and examples of narrative recalls. (a) Participants were instructed to listen to
and subsequently recall two stories in as much detail as possible and in the correct order. Verbal recollections
were automatically transcribed using Google Speech-to-Text and subsequently underwent manual cleaning
by a professional transcription service. (b) Example events from each of the four narratives, along with their
corresponding recollections by selected participants (participant IDs indicated in the titles).

themes are then used to partition these transcripts into discrete events and to assess memory performance. The
following sections summarize this approach with minor adjustments to previously published methods.

Latent topic models for narrative segmentation. ~Following procedures from Heusser et al.'?, we extracted topic
model vectors from both the narrative transcripts and recollections by applying Latent Dirichlet Allocation
(LDA)¥ on sliding windows of the text. We then segmented the sequence of topic vectors into discrete events
with a Hidden Markov Model (HMM). We refer to this as the LDA-HMM method. Our sole modification to the
Heusser et al.'? procedure involved adjusting the LDA hyperparameters via grid search to better suit our data.

Specifically, the grid search aimed to find the optimal combination of LDA hyperparameters that would
result in high alignment between the automated narrative segmentation and human ground truth segmentations
on a previously published, independent dataset collected on the Pieman story (N=205)*. We computed ground
truth on the event segmentations by quantifying participant agreement across the 205 annotators, who pressed a
button each time they encountered an event boundary while listening to the story. For each participant, we first
downsampled the original 1000 Hz binary response vector provided by Michelmann et al.® to a 0.2 Hz binary
response vector. Any button presses within each 5 second window was coded as a “1” in the downsampled
response vector. Our assumption is that events in the story would be at least 5 seconds (~10 spoken words) apart
from one another. To determine statistical significance, we used a block permutation test on the downsampled
response vectors, similar to Silva et al.*'. We shuffled all participants’ response vectors across time, averaged
them for 1000 iterations to generate a null distribution, and compared the initial averaged response to its 95th
percentile (o = 0.05, 1-tailed test). Finally, we aligned each significant time window to a word in the narrative by
identifying the closest word to the highest participant agreement peak in the original 1000 Hz response vectors.
We then manually adjusted these boundaries to the nearest sentence boundary, and any overlapping events after
this adjustment were merged, following Michelmann et al.’.

Then, we returned to optimize the LDA-HMM alignment with ground truth by searching across 3 LDA
hyperparameters: sliding window size (25 to 100 words), step size (1 to 50 words), and topic vector dimension
(10 to 100). The optimal combination was a 55-word window; 21-word step size, and 40-dimension topic vector,
which achieved a F1 score of 0.72 in matching the LDA-HMM segmentations to the ground truth segmenta-
tions. Importantly, we apply the hyperparameters derived from the Pieman narrative to all stories, under the
assumption that they will capture event segmentation patterns across a wider spectrum of narratives.

Probability of recall.  We next sought to compute the overall probability of recollection for events in each nar-
rative. For each recall event, we found the best corresponding story event by identifying the highest correlation
across recall-story topic vectors. This approach allows for some story events to not have a corresponding recollec-
tion. As such, our analysis assumes that not all events in the story are recalled by a participant. We consider story
events with no matching event in the recall as forgotten by the participant. This is in contrast to Heusser ef al.'?
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which matches narrative events to participant recollections, ensuring that each event has one or more corre-
sponding recall. Conceptually, we believe it is reasonable to assume that some events may not be recalled at the
participant-level.

We then computed probability of recall, i.e., percentage of participants who recalled each story event, instead
of the average precision (i.e., correlation coefficient) values reported in'2 To do so, we constructed a matrix in
which rows represented participants and columns represented story events, with values set at 0 for events not
recalled and 1 for those recalled. We then averaged across participants to construct a continuous measure of
recall probability. We then computed 95% confidence intervals across participants by bootstrapping each event,
resampling participants with replacement 10,000 times.

To test whether an event was significantly recalled across participants, we used a permutation test. To con-
struct a null distribution, we permute the order of the events within each participant and re-compute the average
probability of recall for each event. We apply 10,000 repetitions to ensure a reliable estimate of the null distribu-
tion. Importantly, this approach assumes that the base rate of recalling each event is independent of its position
in the story. For a 2-tailed test at « = 0.05, an event is significantly recalled if the average recall probability
exceeds the 97.5th percentile of the null distribution (Fig. 2).

Extending list learning effects.  As part of the technical validation, we sought to extend key effects from the
list-learning literature®'. Specifically, we analyze the probability of any given event to be recalled first (probability
of first recall; PFR) and whether events with close temporal proximity are recalled successively (lag-conditional
response probability; lag-CRP). For both measures, we used the probability of recall values for each narrative
event. To generate the PFR function, we computed the probability of events getting recalled first depending
on their serial position. To generate the lag-CRP function, for every pair of consecutively recalled events, we
computed the distance between their corresponding story events and counted the number of pairs in every
possible lag. The count is then normalized within participant, and then averaged across participants to generate
the conditional response probability. For the first event in PFR and one-lag probability in CRP, we computed
the significance values from permutation distributions that was created by permuting the recall order within
participants (10,000 repetitions; Fig. 3).

Data Records

The data is publicly available on the Open Science Framework (OSF) data repository (https://osf.io/h2pkv/)
under a Creative Commons License (CCO 1.0 Universal)*. The dataset is organized in two primary directories.
The first is experiment materials, which contains information pertinent to the stimuli and experimental
design. Specifically, it contains a text file with the experiment instructions, a psychopy folder housing the task
code deployed on both Prolific and SONA systems, and a st imuli folder containing audio files and transcripts
of the four stories. The second directory, titled data, contains cleaned recall transcripts recall transcripts)
and time-aligned transcripts recall aligned) for each participant, sorted according to the respective stories.
Lastly, the “survey” subfolder contains demographic details and questionnaire responses for all participants.

Technical Validation

We ensured the quality of the collected data by (1) applying exclusion criteria based on self-reported engage-
ment and (2) using a commercial service to guarantee that a human reviewed each audio recording and corre-
sponding text transcript to correct errors arising from automatic transcription. We further validated our dataset
by applying previously developed methods to quantify event recall in audiovisual narratives'? to our dataset.
We then use these metrics to extend classic effects from list learning literature in each narrative in the dataset.

Quantifying average event recall.  Using the LDA-HMM procedure reported in the Methods section, we
computed the probability of recall across participants for each event in the four narratives. This analysis yielded
recall curves for each narrative, providing a continuous measure of memorability for individual events. The y-axis
in Fig. 2 denotes the percentage of participants that recalled a given event. These plots demonstrate substantial
variability in event memorability, with some events being reliably recalled across participants, while others were
inconsistently or infrequently recalled.

Future work can utilize these curves to explore relationships between event recall and various semantic fea-
tures or subjective reports associated with specific narrative segments. Such inquiries are consistent with estab-
lished approaches within the memory literature. Due to the large number of participants in the dataset, future
work would be able to estimate these effects with relatively narrow confidence intervals.

Extending list learning effects. Using the probability of recall curves, we next sought to extend classical
list learning effects to our narrative stimuli, as demonstrated in'?. Specifically, we investigated the probability of
first recall’** and temporal contiguity effects®*°-*%, which both characterize the order in which participants recall
items from a list. In agreement with the literature, we found that the initial event in each narrative showed a sig-
nificantly higher probability of being recalled first by participants (Pieman: X = 0.11, Eyespy: X = 0.28,
Oregontrail: X =0.18, Baseball: X = 0.27; p < 0.001 for all four stories; Fig. 3a).

Previous reports have shown that items from memory are typically recalled in the order that they were ini-
tially presented. They often characterize this effect by computing a conditional response probability curve across
temporal lags. For some item iy, it shows the probability that nearby items will be recalled in order, e.g., item i,
will be recalled at the first lag, followed by item i, at the second lag. Our results show a temporal contiguity effect
across all narratives. There is a significantly higher probability at lag one (Pieman: X = 0.12, Eyespy: X = 0.10,
Oregontrail: X = 0.05, Baseball: X = 0.07; p < 0.001 for all four stories; Fig. 3b), which diminishes as the lag
positively increases. This has previously been shown for a audiovisual narrative'?, but we show here that it also
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® Event 1

Hi, | grew up in Providence, Rhode Island, and for my entire childhood, we were never more than twenty miles away
from the core of our universe: the Kennedys.

® Event3

Their tragedy, plus our own tragedy, was a lot. So, this one Thanksgiving, after dinner and a family fight at grandma's
house, um, we were in the car and were driving home, and the radio was playing this tenth, uh, anniversary of the JFK
assassination, and I'm sitting in the back seat, and | start to cry, and my sister Erin says, "Hey Dad, Mikayla's crying."

x Event 4

: And my father gave an exact replica jewelry to my mother that was replications of the jewelry that Jack gave to Jackie,
: and every Saturday night after mass, my family would be in the living room, and we'd be happily ever aftering to the
: original soundtrack of Camelot.

...........................................................................................................................................................

: Usually, around mid-morning, the first sighting would be made, usually by my Aunt Pat. She'd be like, "Ah, they got Rose
: out walking. Ethel looks drawn," and then about an hour later, my Aunt Gurt would say, "How old is Rose now?" And Aunt
Momo would make the calculations: "Well, let's see, Jack died in sixty-three when she was seventy-four, and Rose's birth-
: day was two weeks last Thursday, and Joe died in sixty-nine, making her a widow at eighty-one, so eighty-five."

Fig. 2 Quantifying narrative event recall. (a) Probability of recall for all the events in four stories, averaged across
participants. The shaded error bars represent bootstrap 95% confidence intervals. We computed a permutation
baseline that quantifies the mean event recall for each story. Events above the 97.5 percentile (dotted gray line)
are recalled significantly more often than the typical event in that story (percent of significantly recalled events:
Pieman 37.5%; Eyespy 31.1%; Oregontrail 30.6%; Baseball 43.6%). (b) Example story events from Eyespy that were
recalled more than average (the first two marked by dots) or less than average (the latter two marked by crosses).

extends to purely audio narratives. Interestingly, we find some variability across narratives, suggesting that there
may be factors in the content or structure of these narratives that impact the order of recall.

The successful extension of these two classically documented memory effects gives us confidence in the
quality of this dataset.

Usage Notes

One of the key challenges with naturalistic experiments is the difficulty in analyzing and interpreting the results.
To enable the community to make effective use of this dataset, we highlight computational methods used to
represent complex properties of narratives, with a focus on their use in studies of human memory. We encourage
the research community to continue the use and development of these tools to answer new research questions
using narrative stimuli.
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Fig. 3 Extension of classic list-learning effects under naturalistic conditions. a) The probability of first recall
as a function of serial position of an event in each narrative. b) The conditional probability of recalling each
event following all other events, plotted for each spoken story. The shaded error bars represent bootstrapped 95%
confidence intervals.

Fig. 4 Semantic narrative networks. To construct these semantic networks, embedding vectors were generated
for text in each narrative event using Google’s Universal Sentence Encoder®. In generating these network
diagrams, we threshold the cosine similarity at 0.35 between events to generate the edge weights. The thickness
of the lines are proportional to these weights. The size of the nodes (representing events) reflects the semantic
centrality across relationships, independent of a threshold. These networks were applied to the NFRD following
the methods in Lee and Chen*S.

Automated event segmentation. The structure of events in a narrative is considered crucial for our epi-
sodic memory*. Recent studies have explored various methods to automatically segment events from narrative
text. While most of the work relies on HMMs'?, careful LLM prompting can generate event boundaries that are
more representative of the average rater than individual human participants'’. Once segmented, narratives can
be analyzed to uncover properties and relationships among events that may influence memory retention. For
instance,* found that LLMs can accurately score the plausibility of different agent-patient interactions in events.

Semantic and discourse properties. Annotating the semantic and discourse properties in narratives
requires methods that can integrate over long temporal windows (i.e., spanning multiple words, sentences, or
paragraphs). Recent approaches have drawn upon methods from linguistics and natural language processing
(NLP) to represent the semantic content of narratives. These include latent topic models*, sentence embedding
methods'*'?, and more recently, autoregressive language models (LMs). As machine learning methods continue
their rapid pace of development, researchers can anticipate a variety of new methods for annotating complex
semantic properties. For instance, recent work investigated the viability of large language models (LLMs) to code
different categories of interest in sociolinguistics, such as figurative expressions (e.g. sarcasm, idioms, etc.) and
humor*. While it was reported that pre-trained LLMs showed promising results, further development is needed
before such models can be used in a completely unsupervised manner.

In a recent study by Lee and Chen?, sentence embedding techniques were used to construct undirected
graphs representing the relationships between narrative events based on their semantic similarity. We apply
these methods to the NFRD as displayed in Fig. 4. Following the procedures from Lee and Chen*’, we find a
significantly positive effect of semantic centrality - indicating the semantic similarity of an event to all others
within the narrative - on the likelihood of recall for that event (p < 0.001 in a linear mixed-effects model);
notably, the effect size (8 = 0.27) mirrors that reported in Lee and Chen*. This replication of these high-level
semantic effects using a fully automated scoring approach'? underscores the robustness of the dataset utilized
in our study. We provide all code utilized in the application of these methodologies to the current dataset to
facilitate future research.
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Autoregressive LMs, leveraging contextual information to generate predicted probability distributions for
subsequent tokens or words, have also been utilized by researchers to compute a continuous measure of predic-
tion error or surprise. This approach incorporates more semantic information than other measures of surprise?’.
Prediction error, or surprise, has been shown to influence memory encoding and event segmentation®*3*°. These
developments in NLP have allowed researchers to investigate how these model-based definitions of prediction
error impact memory behavior, rather than relying on experimental manipulations of prediction error'®*.

Recent work has developed LLM-based methods to score other properties of the memory recall. For example,
a recent study fine-tuned an LLM to distinguish recall details pertaining to the central event versus those that
are unrelated'?, replacing a more laborious interview method to score autobiographical recall’’. This method has
been used to understand how surprise and emotion impact autobiographical memory®2.

Code availability
The code is available on https://github.com/phoebsc/Narrative-Memory-Dataset. The code is in Python, using
standard packages such as NumPy and SciPy, and topic modeling functions from Heusser et al.'%.

Received: 19 June 2024; Accepted: 29 October 2024;
Published online: 03 December 2024

References

1. Ebbinghaus, H. Memory: A contribution to experimental psychology, trans. HA Ruger & CE Bussenius. Teachers College. (1885).

2. Ranganath, C. Oxford handbook of memory: Episodic memory (ranganath). Preprint at https://doi.org/10.31234/o0sf.io/nw94y
(2022).

3. Kahana, M. J., Diamond, N. B. & Aka, A. Laws of human memory. Preprint at https://doi.org/10.31234/osf.io/aczu9 (2022).

4. Nastase, S. A. et al. The “Narratives” fMRI dataset for evaluating models of naturalistic language comprehension. Scientific Data 8,
250, https://doi.org/10.1038/s41597-021-01033-3 (2021).

5. Michelmann, S. et al. Moment-by-moment tracking of naturalistic learning and its underlying hippocampo-cortical interactions.
Nature Communications 12, 5394 (2021).

6. Antony, J. W. et al. Behavioral, physiological, and neural signatures of surprise during naturalistic sports viewing. Neuron 109,
377-390 (2021).

7. Baldassano, C. et al. Discovering event structure in continuous narrative perception and memory. Neuron 95, 709-721 (2017).

8. Reagh, Z. M. & Ranganath, C. Flexible reuse of cortico-hippocampal representations during encoding and recall of naturalistic
events. Nature Communications 14, 1279 (2023).

9. Chen, J. et al. Shared memories reveal shared structure in neural activity across individuals. Nature Neuroscience 20, 115-125 (2017).

10. Raccah, O., Chen, P, Willke, T. L., Poeppel, D. & Vo, V. A. Memory in humans and deep language models: Linking hypotheses for
model augmentation. Paper at Memory in Real and Artificial Intelligence Workshop, NeurIPS (2022).

11. Zadbood, A., Nastase, S., Chen, J., Norman, K. A. & Hasson, U. Neural representations of naturalistic events are updated as our
understanding of the past changes. eLife 11, €79045 (2022).

12. Heusser, A. C,, Fitzpatrick, P. C. & Manning, J. R. Geometric models reveal behavioural and neural signatures of transforming
experiences into memories. Nature Human Behaviour 5,905-919 (2021).

13. Lee, H. & Chen, J. Predicting memory from the network structure of naturalistic events. Nature Communications 13, 4235 (2022).

14. Nau, M., Greene, A., Chen, J. & Baker, C. Gaze-dependent brain activity during narrative perception and recall. Journal of Vision 22,
4130-4130 (2022).

15. Lee, H.,, Chen, J. & Hasson, U. A functional neuroimaging dataset acquired during naturalistic movie watching and narrated recall
of a series of short cinematic films. Data in Brief 46, 108788 (2023).

16. Beukers, A. O. et al. Blocked training facilitates learning of multiple schemas. Communications Psychology 2, 28, https://doi.
0rg/10.1038/s44271-024-00079-4 (2024).

17. Michelmann, S., Kumar, M., Norman, K. A. & Toneva, M. Large language models can segment narrative events similarly to humans.
Preprint at http://arxiv.org/abs/2301.10297 (2023).

18. Genugten, R. D. v. & Schacter, D. L. Automated scoring of the autobiographical interview with natural language processing. Behavior
Research Methods https://doi.org/10.3758/s13428-023-02145-x (2024).

19. Shen, X., Houser, T., Smith, D. V. & Murty, V. P. Machine-learning as a validated tool to characterize individual differences in free
recall of naturalistic events. Psychonomic Bulletin & Review 30, 308-316 (2023).

20. Bruner, J.Actual Minds, Possible Worlds (Harvard University Press, 1986).

21. Hamilton, L. S. & Huth, A. G. The revolution will not be controlled: natural stimuli in speech neuroscience. Language, cognition and
neuroscience 35, 573-582 (2020).

22. Juncos-Rabadan, O., Pereiro, A. X. & Rodriguez, M. S. Narrative speech in aging: Quantity, information content, and cohesion. Brain
and Language 95, 423-434 (2005).

23. Delarazan, A. I, Ranganath, C. & Reagh, Z. M. Aging impacts memory for perceptual, but not narrative, event details. Learning &
Memory 30, 48-54 (2023).

24. Dunlosky, J., Rawson, K. A., Marsh, E. ], Nathan, M. J. & Willingham, D. T. Improving students’ learning with effective learning
techniques: Promising directions from cognitive and educational psychology. Psychological Science in the Public interest 14, 4-58
(2013).

25. Raccah, O,, Doelling, K. B., Davachi, L. & Poeppel, D. Acoustic features drive event segmentation in speech. Journal of Experimental
Psychology: Learning, Memory, and Cognition (2022).

26. Tan, L., Ward, G., Paulauskaite, L. & Markou, M. Beginning at the beginning: Recall order and the number of words to be recalled.
Journal of Experimental Psychology: Learning, Memory, and Cognition 42, 1282 (2016).

27. Atkinson, R. C. & Shiffrin, R. M. Human memory: A proposed system and its control processes. In Psychology of learning and
motivation, vol. 2, 89-195 (Elsevier, 1968).

28. Postman, L. & Phillips, L. W. Short-term temporal changes in free recall. Quarterly journal of experimental psychology 17, 132-138
(1965).

29. Welch, G. & Burnett, C. T. Is primacy a factor in association-formation. The American Journal of Psychology 396-401 (1924).

30. Howard, M. W. & Kahana, M. . Contextual variability and serial position effects in free recall. Journal of Experimental Psychology:
Learning, Memory, and Cognition 25, 923 (1999).

31. Kahana, M. J.Foundations of human memory (OUP USA, 2012).

32. Healey, M. K. & Uitvlugt, M. G. The role of control processes in temporal and semantic contiguity. Memory & Cognition 47,719-737
(2019).

33. Healey, M. K,, Long, N. M. & Kahana, M. J. Contiguity in episodic memory. Psychonomic bulletin & review 26, 699-720 (2019).

SCIENTIFICDATA|  (2024) 11:1317 | https://doi.org/10.1038/s41597-024-04082-6 8


https://doi.org/10.1038/s41597-024-04082-6
https://github.com/phoebsc/Narrative-Memory-Dataset
https://doi.org/10.31234/osf.io/nw94y
https://doi.org/10.31234/osf.io/aczu9
https://doi.org/10.1038/s41597-021-01033-3
https://doi.org/10.1038/s44271-024-00079-4
https://doi.org/10.1038/s44271-024-00079-4
http://arxiv.org/abs/2301.10297
https://doi.org/10.3758/s13428-023-02145-x

www.nature.com/scientificdata/

34. Mack, C. C,, Cinel, C., Davies, N., Harding, M. & Ward, G. Serial position, output order, and list length effects for words presented
on smartphones over very long intervals. Journal of Memory and Language 97, 61-80 (2017).

35. Peirce, J. W. Psychopy-psychophysics software in python. Journal of neuroscience methods 162, 8-13 (2007).

36. Raccah, O., Chen, P, Gureckis, T. M., Poeppel, D. & Vo, V. Free recall of narratives https://doi.org/10.17605/OSEIO/H2PKV (2024).

37. Yuan, J. & Liberman, M. Speaker identification on the SCOTUS corpus. The Journal of the Acoustical Society of America 123,
3878-3878, https://doi.org/10.1121/1.2935783 (2008).

38. Boersma, P. Praat, a system for doing phonetics by computer. Glot International 5, 341-345 (2001).

39. Hoffman, M. D,, Blei, D. M., Wang, C. & Paisley, J. Stochastic variational inference. Journal of Machine Learning Research (2013).

40. Michelmann, S. et al. Moment-by-moment tracking of naturalistic learning and its underlying hippocampo-cortical interactions.
Nature Communications 12, 5394, https://doi.org/10.1038/s41467-021-25376-y (2021).

41. Silva, M., Baldassano, C. & Fuentemilla, L. Rapid memory reactivation at movie event boundaries promotes episodic encoding.
Journal of Neuroscience 39, 8538-8548 (2019).

42. Lee, H., Bellana, B. & Chen, J. What can narratives tell us about the neural bases of human memory? Current Opinion in Behavioral
Sciences 32, 111-119, https://doi.org/10.1016/j.cobeha.2020.02.007 (2020).

43. Kauf, C. et al. Event Knowledge in Large Language Models: The Gap Between the Impossible and the Unlikely. Cognitive Science 47,
€13386, https://doi.org/10.1111/cogs.13386 (2023).

44. Heusser, A. C., Poeppel, D., Ezzyat, Y. & Davachi, L. Episodic sequence memory is supported by a theta-gamma phase code. Nature
neuroscience 19, 1374-1380 (2016).

45. Ziems, C. et al. Can Large Language Models Transform Computational Social Science? Computational Linguistics 1-53 https://doi.
org/10.1162/coli_a_00502 (2023).

46. Lee, H. & Chen, J. Predicting memory from the network structure of naturalistic events. Nature Communications 13, 4235, https://
doi.org/10.1038/541467-022-31965-2 (2022).

47. Shain, C., Blank, I. A, van Schijndel, M., Schuler, W. & Fedorenko, E. fMRI reveals language specific predictive coding during
naturalistic sentence comprehension. Neuropsychologia 138, 107307, https://doi.org/10.1016/j.neuropsychologia.2019.107307
(2020).

48. Sinclair, A. H. & Barense, M. D. Surprise and destabilize: Prediction error influences episodic memory reconsolidation. Learning &
Memory 25, 369-381, https://doi.org/10.1101/Im.046912.117 (2018).

49. Foster, M. I. & Keane, M. T. The Role of Surprise in Learning: Different Surprising Outcomes Affect Memorability Differentially.
Topics in Cognitive Science 11, 75-87, https://doi.org/10.1111/tops.12392 (2019).

50. Kumar, M. et al. Bayesian surprise predicts human event segmentation in story listening. PsyArXiv https://doi.org/10.31234/ost.io/
qd2ra (2022).

51. Levine, B., Svoboda, E., Hay, J. E, Winocur, G. & Moscovitch, M. Aging and autobiographical memory: Dissociating episodic from
semantic retrieval. Psychology and Aging 17, 677-689, https://doi.org/10.1037/0882-7974.17.4.677 (2002).

52. Rouhani, N. ef al. Collective events and individual affect shape autobiographical memory. Proceedings of the National Academy of
Sciences 120, 2221919120, https://doi.org/10.1073/pnas.2221919120 (2023).

53. Cer, D. et al. Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018).

Acknowledgements
This dataset collection was funded by a grant from Intel Labs at the Intel Corporation. This work was supported
by a National Science Foundation Graduate Research Fellowship to O.R. (DGE 1839302)

Author contributions

O.R,, P.C,, and V.A.V. conceived the experiment. O.R. and P.C. conducted the experiments and analyzed the
data. V.A.V,, TM.G., and D.P. provided project guidance. All authors contributed to reviewing and writing the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to O.R. or P.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

oM which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included in
the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

SCIENTIFICDATA|  (2024) 11:1317 | https://doi.org/10.1038/s41597-024-04082-6 9


https://doi.org/10.1038/s41597-024-04082-6
https://doi.org/10.17605/OSF.IO/H2PKV
https://doi.org/10.1121/1.2935783
https://doi.org/10.1038/s41467-021-25376-y
https://doi.org/10.1016/j.cobeha.2020.02.007
https://doi.org/10.1111/cogs.13386
https://doi.org/10.1162/coli_a_00502
https://doi.org/10.1162/coli_a_00502
https://doi.org/10.1038/s41467-022-31965-2
https://doi.org/10.1038/s41467-022-31965-2
https://doi.org/10.1016/j.neuropsychologia.2019.107307
https://doi.org/10.1101/lm.046912.117
https://doi.org/10.1111/tops.12392
https://doi.org/10.31234/osf.io/qd2ra
https://doi.org/10.31234/osf.io/qd2ra
https://doi.org/10.1037/0882-7974.17.4.677
https://doi.org/10.1073/pnas.2221919120
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	The “Naturalistic Free Recall” dataset: four stories, hundreds of participants, and high-fidelity transcriptions

	Background & Summary

	Methods

	Participants. 
	Stimuli. 
	Task Procedure. 
	Post-task questionnaire. 
	Speech-to-text transcriptions. 
	Text speech alignment. 
	Automated scoring approach. 
	Latent topic models for narrative segmentation. 
	Probability of recall. 
	Extending list learning effects. 


	Data Records

	Technical Validation

	Quantifying average event recall. 
	Extending list learning effects. 

	Usage Notes

	Automated event segmentation. 
	Semantic and discourse properties. 

	Acknowledgements

	Fig. 1 Experimental procedures and examples of narrative recalls.
	Fig. 2 Quantifying narrative event recall.
	Fig. 3 Extension of classic list-learning effects under naturalistic conditions.
	Fig. 4 Semantic narrative networks.
	Table 1 Overview of the narrative stimuli and participant demographics.




