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The “Naturalistic Free Recall” 
dataset: four stories, hundreds 
of participants, and high-fidelity 
transcriptions
Omri Raccah1,6 ✉, Phoebe Chen2,6 ✉, Todd M. Gureckis2, David Poeppel   2,3,4 & Vy A. Vo   5

The “Naturalistic Free Recall” dataset provides transcribed verbal recollections of four spoken narratives 
collected from 229 participants. Each participant listened to two stories, varying in duration from 
approximately 8 to 13 minutes, recorded by different speakers. Subsequently, participants were tasked 
with verbally recalling the narrative content in as much detail as possible and in the correct order. 
The dataset includes high-fidelity, time-stamped text transcripts of both the original narratives and 
participants’ recollections. To validate the dataset, we apply a previously published automated method 
to score memory performance for narrative content. Using this approach, we extend effects traditionally 
observed in classic list-learning paradigms. The analysis of narrative contents and its verbal recollection 
presents unique challenges compared to controlled list-learning experiments. To facilitate the use of 
these rich data by the community, we offer an overview of recent computational methods that can be 
used to annotate and evaluate key properties of narratives and their recollections. Using advancements 
in machine learning and natural language processing, these methods can help the community understand 
the role of event structure, discourse properties, prediction error, high-level semantic features (e.g., 
idioms, humor), and more. All experimental materials, code, and data are publicly available to facilitate 
new advances in understanding human memory.

Background & Summary
Since its inception, the empirical study of human memory has relied on controlled trial-based presentation of 
item lists, followed by an assessment of memory performance1–3. Despite the empirical utility and significance 
of these list-learning paradigms, researchers have increasingly argued for the use of naturalistic paradigms as 
a complementary source of evidence to ensure the broader applicability of findings generated under controlled 
conditions. This area of memory research primarily uses audiovisual movies and spoken narratives to uncover 
the impact of ecologically relevant variables and their interaction on manually annotated or automatically scored 
measures of memory performance4–16. This emerging literature has also resulted in a range of computational 
tools for annotating narratives and evaluating participant recollections12,17–19. Here, we contribute a naturalistic 
dataset to advance the study of human memory under ecologically valid conditions. Our work aims to expand 
the scope of questions that researchers can answer about human memory by (1) presenting the “Naturalistic Free 
Recall” dataset (NFRD), the most comprehensive dataset on human memory for narratives; (2) validating the 
use of this dataset for research on human memory by isolating classic signatures of human memory phenomena; 
and (3) providing researchers with a preview of methods and questions that can be answered with this type of 
data.

The NFRD contains data collected online from hundreds of participants who listened to a spoken narrative 
and immediately recalled it in as much detail as possible. Each participant was presented two of the four nar-
rative stimuli included in the NFRD, and performed a spoken recall for at least 4 minutes following each story. 
This is intended to mimic real-world conditions for retelling narrative content. The dataset includes (1) text 
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transcripts of the four distinct narrative stimuli, (2) professionally reviewed, high-fidelity transcripts of each 
verbal recall, and (3) time-stamps for each spoken word in the recall. While numerous studies have examined 
memory and perception for naturalistic content, verbal recollection - specifically in the form of storytelling 
- remains an understudied natural behavior. The retelling of narratives is a core part of our everyday lives, rep-
resenting a fundamental human capability20. The NFRD provides a framework for studying which elements of 
a narratives are retained or forgotten by a listener, as well as how the encoded information is recalled verbally. 
We included four different narrative stimuli of a moderate length (average 11.58 minutes) to provide variability 
in a variety of stimulus features that may affect memory recall, such as semantic content, narrative structure, 
and emotional affect. This enables researchers to test the generalizability of empirical findings across multiple 
narrative contexts. Prior memory research has typically relied on data from approximately 20-30 participants 
recalling a single narrative or movie clip. In contrast, our dataset provides a substantially larger sample size, 
allowing researchers to investigate memory phenomena that may occur less frequently or reliably under natu-
ralistic conditions (e.g., false memory, metacognitive abilities, etc.) The concern regarding low power for rare 
variables in naturalistic materials has been previously articulated by Hamilton and Huth21. Finally, the large 
sample size of our dataset allows for an analysis of individual differences in memory for narrative contents 
(e.g.,22,23). For example, this can be achieved by examining the relationship between recall features and factors 
such as age, particularly for the oregontrail and baseball narratives in the NFRD, which exhibit a wide distribu-
tion. Furthermore, we administered an open-ended questionnaire on mnemonic strategies that can be leveraged 
to investigate individual differences in learning outcomes24,25.

To validate the use of the NFRD for human memory research, we replicate well-characterized memory phe-
nomena that have been reported in highly-controlled experimental paradigms. These classic list-learning par-
adigms have demonstrated serial position effects on memory26–29 and temporal contiguity effects3,30–34. In line 
with this extensive literature, we demonstrate that these signatures of memory recall are also present in the 
NFRD. This validation analysis relies heavily on previously developed computational approaches to study mem-
ory recall for narrative stimuli12.

Naturalistic studies of human memory provide us with the opportunity to answer novel questions that 
cannot be addressed with paradigms such as list learning. However, generalizing approaches from controlled 
experiments to naturalistic narratives introduces substantial conceptual and technical challenges. In traditional 
list-learning experiments, discrete items (e.g., words or images) have a clear match to particular items during 
recall. In contrast, real-world narratives lack such clarity in the elements that are remembered, and the corre-
spondence between these elements and their recall is dependent on their conveyed meaning. For this reason, 
one primary obstacles with this work is the development of analysis tools to annotate the narrative stimuli and 
the spoken recall data. We conclude our paper with a concise review and partial application of the latest compu-
tational tools and methods that may be applied to analyze the NFRD. This includes automatic event boundary 
detection, a variety of semantic annotation tools, and automated approaches for scoring memory performance 
and features of memory recall. Future work may even use the NFRD to develop and validate novel computa-
tional tools for research on human memory.

Methods
Participants.  The NFRD was collected from native English speakers who participated in the online study (N 
= 229; 145 female; meanage = 25.03, SDage = 11.15). The experiment was conducted across two distinct online 
platforms: the SONA Systems platform at New York University (N=167, meanage = 19.67, SDage = 1.33) and 
Prolific (www.prolific.com; N=62, meanage = 39.77, SDage = 12.90). Participants recruited via SONA were NYU 
undergraduates who received course credit for their involvement, whereas those recruited through Prolific repre-
sented a broader demographic and received compensation at a rate of $10 an hour. The study was approved by the 
local institutional review board (NYU’s Committee on Activities Involving Human Subjects; IRB-FY2016-1357). 
Before starting the online experiment, the consent form was presented on the screen and participants indicated 
using their keyboard that they agree to participate in the experiment. The consent form also included the follow-
ing statement regarding data sharing: “Information without identifying details may be used in future research or 
shared with other researchers without additional consent.”

The data were derived from an originally collected participant pool of 291 participants through applying 
exclusion criteria to ensure data quality and gender balance. Specifically, 7 participants were excluded due to 
self-reported low engagement ratings (lower than or equal to 2 out of a 5-point Likert scale), 4 participants were 
excluded for missing age data, and 1 participant was excluded for missing questionnaire data. Additionally, data 
from 50 participants were not included in the current dataset due to budget constraints related to audio tran-
scription. When excluding based on budget constraints, we employed a sample stratification strategy in which 
participants from non-male gender groups (female or other) were randomly selected, given the smaller num-
ber of male participants initially collected. We anonymized participant information by replacing names with 
numerical IDs. The only demographic information we have released is age and gender. Furthermore, we have 
not shared the audio recordings themselves to avoid re-identification risks and instead share recall transcripts 
with word-level timestamps (see following sections).

Stimuli.  The stimuli comprised four distinct spoken narratives in English. Three of the narratives were sourced 
from The Moth Radio Hour podcast series, specifically Pieman, Eyespy, and Oregontrail. The fourth narrative was 
the first chapter from the audiobook “Baseball Joe in the Big League” by Lester Chadwick, henceforth referred to as 
Baseball. This audiobook chapter was obtained from LibriVox (www.librivox.org). Each narrative was accompanied 
by a corresponding text transcript. The text for Pieman was gathered from a previously published neuroimaging 
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dataset4, while the text for Baseball was publicly available on Project Gutenberg (www.gutenberg.org). For the 
remaining narratives, we followed the procedures outlined in the Speech-to-text Transcriptions section.

On average, each audio clip lasted 11 minutes and 35 seconds, inclusive of the 15 seconds of music preced-
ing ”Pieman” and the 15 seconds of silence following it. All other audio clips began and ended promptly. The 
narratives contained an average of 1936 words each. A summary of the stimuli and participant demographics is 
presented in Table 1.

Task Procedure.  The experiment was administered online and programmed using the PsychoPy library35. 
Participants were instructed to use headphones or earphones throughout the experiment. After the initial audio 
sound check, they listened to the verbal instructions, after which the same instructions were displayed as text on 
the screen. Participants were instructed to “recollect the story in as much detail as possible by speaking aloud.” 
While participants were encouraged to recall the story in the correct order, they were asked to return to any ear-
lier points they might have missed. Participants’ responses for both the experiment and the questionnaire were 
collected using either their native computer keyboard or an external keyboard.

Each participant was exposed to 2 out of 4 spoken narratives (Fig. 1). While the presentation order was ran-
domized, the same two stories were consistently paired together (Pieman and Eyespy; Oregontrail and Baseball). 
After listening to each audio narrative, participants were immediately prompted to verbally recall the narrative 
for a minimum of 4 minutes. A green circle was displayed on the screen for the first four minutes of the record-
ing, after which a yellow circle was displayed. Participants were instructed to recall the entire story but could 
only proceed after the circle had turned yellow. The JavaScript code used to present the online experiment, 
including the full instruction text and post-task questionnaire, is shared alongside our data repository36.

We encountered occasional data loss due to technical difficulties with the platform or the participant’s hard-
ware setup, such as empty audio recordings, resulting in a loss of recall data for approximately 9.4% of the pre-
sented stories.

Post-task questionnaire.  After participants completed the experiment, a questionnaire was administered 
to assess participants’ understanding of the task and mnemonic strategies. The first three questions serve to assess 
subjects’ understanding and subjective difficulty of the task: “I understood the task instructions”, “I was engaged 
in the experiment” and “I found the experiment difficult”. Participants were instructed to provide responses to 
statements on a Likert scale, which included five balanced responses (strongly disagree, disagree, neither agree 
nor disagree, agree, or strongly agree). Next, participants were asked to provide open responses stating their strat-
egy for memorizing the stories, subjectively memorable moments, and activities during the task. The open-ended 
questions were: (a) Did you use a particular strategy to memorize the story? (b) Were there any moments in either 
story that you found particularly memorable? If so, please describe them below. (c) Is there anything you think 
we should know about your experience taking our experiment? (d) What were you doing while listening to the 
stories? These questionnaire responses are included in the dataset.

Speech-to-text transcriptions.  We first utilized the Speech-to-Text API offered by Google Cloud (cloud.
google.com/speech-to-text) to process all audio recordings. This generated a preliminary transcription of the 
audio recording, including some punctuation. Next, both the original audio recording and the preliminary tran-
scription were submitted to a commercial transcript correction service (www.transcriptionwing.com). This pro-
cess ensured that each transcript underwent thorough human review and manual correction. Human reviewers 
were provided with specific instructions to exclude filler words (e.g., “um”, “oh”) and eliminate word repetitions 
(e.g., “and and”). Additionally, they received a list of proper nouns featured in each story to maintain consistent 
spelling throughout the transcript. All numerical values were transcribed into words. Although reviewers were 
informed that letter case and punctuation were not critical, transcripts were typically returned with proper case 
and punctuation.

Text speech alignment.  We used the Penn Phonetics Lab Forced Aligner toolkit37 (p2fa) to align the audio 
files to words in the transcript. The audio files were first resampled to the optimal sample rate for the algorithm 
(11,025 Hz) with SoX v14.4.2 (using the rate effect instead of the deprecated polyphase). The alignment produces 
TextGrid38 files that denote the time associated with the start and end of each word in the transcript, as well as 
common noises during natural speech (breaths, coughs, laughter, short pauses, etc.) Documentation regarding 
the TextGrid format, along with Python code that can be used to extract data from these files is available on the 
OSF repository36.

Automated scoring approach.  To validate the use of this data to score memory performance for each nar-
rative, we applied a recently published automated method by Heusser and colleagues12. This method uses a topic 
model to extract latent themes (or topics) from the narrative transcript as well as participants’ recollections. These 

Stimulus source Speaker gender Length in words Length in audio (seconds) Participant N Participant age range Participant gender

pieman The Moth Radio Hour Male 948 489 116 17-29 88 female

eyespy The Moth Radio Hour Female 2318 779 116 17-29 88 female

oregontrail The Moth Radio Hour Female 2389 743 113 18-75 57 female

baseball LibriVox Audio Male 2088 768 113 18-75 57 female

Table 1.  Overview of the narrative stimuli and participant demographics.

https://doi.org/10.1038/s41597-024-04082-6
http://www.gutenberg.org
http://www.transcriptionwing.com


4Scientific Data |         (2024) 11:1317  | https://doi.org/10.1038/s41597-024-04082-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

themes are then used to partition these transcripts into discrete events and to assess memory performance. The 
following sections summarize this approach with minor adjustments to previously published methods.

Latent topic models for narrative segmentation.  Following procedures from Heusser et al.12, we extracted topic 
model vectors from both the narrative transcripts and recollections by applying Latent Dirichlet Allocation 
(LDA)39 on sliding windows of the text. We then segmented the sequence of topic vectors into discrete events 
with a Hidden Markov Model (HMM). We refer to this as the LDA-HMM method. Our sole modification to the 
Heusser et al.12 procedure involved adjusting the LDA hyperparameters via grid search to better suit our data.

Specifically, the grid search aimed to find the optimal combination of LDA hyperparameters that would 
result in high alignment between the automated narrative segmentation and human ground truth segmentations 
on a previously published, independent dataset collected on the Pieman story (N=205)40. We computed ground 
truth on the event segmentations by quantifying participant agreement across the 205 annotators, who pressed a 
button each time they encountered an event boundary while listening to the story. For each participant, we first 
downsampled the original 1000 Hz binary response vector provided by Michelmann et al.5 to a 0.2 Hz binary 
response vector. Any button presses within each 5 second window was coded as a “1” in the downsampled 
response vector. Our assumption is that events in the story would be at least 5 seconds (~10 spoken words) apart 
from one another. To determine statistical significance, we used a block permutation test on the downsampled 
response vectors, similar to Silva et al.41. We shuffled all participants’ response vectors across time, averaged 
them for 1000 iterations to generate a null distribution, and compared the initial averaged response to its 95th 
percentile (α = 0.05, 1-tailed test). Finally, we aligned each significant time window to a word in the narrative by 
identifying the closest word to the highest participant agreement peak in the original 1000 Hz response vectors. 
We then manually adjusted these boundaries to the nearest sentence boundary, and any overlapping events after 
this adjustment were merged, following Michelmann et al.17.

Then, we returned to optimize the LDA-HMM alignment with ground truth by searching across 3 LDA 
hyperparameters: sliding window size (25 to 100 words), step size (1 to 50 words), and topic vector dimension 
(10 to 100). The optimal combination was a 55-word window, 21-word step size, and 40-dimension topic vector, 
which achieved a F1 score of 0.72 in matching the LDA-HMM segmentations to the ground truth segmenta-
tions. Importantly, we apply the hyperparameters derived from the Pieman narrative to all stories, under the 
assumption that they will capture event segmentation patterns across a wider spectrum of narratives.

Probability of recall.  We next sought to compute the overall probability of recollection for events in each nar-
rative. For each recall event, we found the best corresponding story event by identifying the highest correlation 
across recall-story topic vectors. This approach allows for some story events to not have a corresponding recollec-
tion. As such, our analysis assumes that not all events in the story are recalled by a participant. We consider story 
events with no matching event in the recall as forgotten by the participant. This is in contrast to Heusser et al.12  

Fig. 1  Experimental procedures and examples of narrative recalls. (a) Participants were instructed to listen to 
and subsequently recall two stories in as much detail as possible and in the correct order. Verbal recollections 
were automatically transcribed using Google Speech-to-Text and subsequently underwent manual cleaning 
by a professional transcription service. (b) Example events from each of the four narratives, along with their 
corresponding recollections by selected participants (participant IDs indicated in the titles).
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which matches narrative events to participant recollections, ensuring that each event has one or more corre-
sponding recall. Conceptually, we believe it is reasonable to assume that some events may not be recalled at the 
participant-level.

We then computed probability of recall, i.e., percentage of participants who recalled each story event, instead 
of the average precision (i.e., correlation coefficient) values reported in12. To do so, we constructed a matrix in 
which rows represented participants and columns represented story events, with values set at 0 for events not 
recalled and 1 for those recalled. We then averaged across participants to construct a continuous measure of 
recall probability. We then computed 95% confidence intervals across participants by bootstrapping each event, 
resampling participants with replacement 10,000 times.

To test whether an event was significantly recalled across participants, we used a permutation test. To con-
struct a null distribution, we permute the order of the events within each participant and re-compute the average 
probability of recall for each event. We apply 10,000 repetitions to ensure a reliable estimate of the null distribu-
tion. Importantly, this approach assumes that the base rate of recalling each event is independent of its position 
in the story. For a 2-tailed test at α = 0.05, an event is significantly recalled if the average recall probability 
exceeds the 97.5th percentile of the null distribution (Fig. 2).

Extending list learning effects.  As part of the technical validation, we sought to extend key effects from the 
list-learning literature31. Specifically, we analyze the probability of any given event to be recalled first (probability 
of first recall; PFR) and whether events with close temporal proximity are recalled successively (lag-conditional 
response probability; lag-CRP). For both measures, we used the probability of recall values for each narrative 
event. To generate the PFR function, we computed the probability of events getting recalled first depending 
on their serial position. To generate the lag-CRP function, for every pair of consecutively recalled events, we 
computed the distance between their corresponding story events and counted the number of pairs in every 
possible lag. The count is then normalized within participant, and then averaged across participants to generate 
the conditional response probability. For the first event in PFR and one-lag probability in CRP, we computed 
the significance values from permutation distributions that was created by permuting the recall order within 
participants (10,000 repetitions; Fig. 3).

Data Records
The data is publicly available on the Open Science Framework (OSF) data repository (https://osf.io/h2pkv/) 
under a Creative Commons License (CC0 1.0 Universal)36. The dataset is organized in two primary directories. 
The first is experiment_materials, which contains information pertinent to the stimuli and experimental 
design. Specifically, it contains a text file with the experiment instructions, a psychopy folder housing the task 
code deployed on both Prolific and SONA systems, and a stimuli folder containing audio files and transcripts 
of the four stories. The second directory, titled data, contains cleaned recall transcripts recall_transcripts) 
and time-aligned transcripts recall_aligned) for each participant, sorted according to the respective stories. 
Lastly, the “survey” subfolder contains demographic details and questionnaire responses for all participants.

Technical Validation
We ensured the quality of the collected data by (1) applying exclusion criteria based on self-reported engage-
ment and (2) using a commercial service to guarantee that a human reviewed each audio recording and corre-
sponding text transcript to correct errors arising from automatic transcription. We further validated our dataset 
by applying previously developed methods to quantify event recall in audiovisual narratives12 to our dataset. 
We then use these metrics to extend classic effects from list learning literature in each narrative in the dataset.

Quantifying average event recall.  Using the LDA-HMM procedure reported in the Methods section, we 
computed the probability of recall across participants for each event in the four narratives. This analysis yielded 
recall curves for each narrative, providing a continuous measure of memorability for individual events. The y-axis 
in Fig. 2 denotes the percentage of participants that recalled a given event. These plots demonstrate substantial 
variability in event memorability, with some events being reliably recalled across participants, while others were 
inconsistently or infrequently recalled.

Future work can utilize these curves to explore relationships between event recall and various semantic fea-
tures or subjective reports associated with specific narrative segments. Such inquiries are consistent with estab-
lished approaches within the memory literature. Due to the large number of participants in the dataset, future 
work would be able to estimate these effects with relatively narrow confidence intervals.

Extending list learning effects.  Using the probability of recall curves, we next sought to extend classical 
list learning effects to our narrative stimuli, as demonstrated in12. Specifically, we investigated the probability of 
first recall26–29 and temporal contiguity effects3,30–34, which both characterize the order in which participants recall 
items from a list. In agreement with the literature, we found that the initial event in each narrative showed a sig-
nificantly higher probability of being recalled first by participants (Pieman: X  = 0.11, Eyespy: X  = 0.28, 
Oregontrail: X  = 0.18, Baseball: X  = 0.27; p < 0.001 for all four stories; Fig. 3a).

Previous reports have shown that items from memory are typically recalled in the order that they were ini-
tially presented. They often characterize this effect by computing a conditional response probability curve across 
temporal lags. For some item i0, it shows the probability that nearby items will be recalled in order, e.g., item i1 
will be recalled at the first lag, followed by item i2 at the second lag. Our results show a temporal contiguity effect 
across all narratives. There is a significantly higher probability at lag one (Pieman: X  = 0.12, Eyespy: X  = 0.10, 
Oregontrail: X  = 0.05, Baseball: X  = 0.07; p < 0.001 for all four stories; Fig. 3b), which diminishes as the lag 
positively increases. This has previously been shown for a audiovisual narrative12, but we show here that it also 
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extends to purely audio narratives. Interestingly, we find some variability across narratives, suggesting that there 
may be factors in the content or structure of these narratives that impact the order of recall.

The successful extension of these two classically documented memory effects gives us confidence in the 
quality of this dataset.

Usage Notes
One of the key challenges with naturalistic experiments is the difficulty in analyzing and interpreting the results. 
To enable the community to make effective use of this dataset, we highlight computational methods used to 
represent complex properties of narratives, with a focus on their use in studies of human memory. We encourage 
the research community to continue the use and development of these tools to answer new research questions 
using narrative stimuli.

Fig. 2  Quantifying narrative event recall. (a) Probability of recall for all the events in four stories, averaged across 
participants. The shaded error bars represent bootstrap 95% confidence intervals. We computed a permutation 
baseline that quantifies the mean event recall for each story. Events above the 97.5 percentile (dotted gray line) 
are recalled significantly more often than the typical event in that story (percent of significantly recalled events: 
Pieman 37.5%; Eyespy 31.1%; Oregontrail 30.6%; Baseball 43.6%). (b) Example story events from Eyespy that were 
recalled more than average (the first two marked by dots) or less than average (the latter two marked by crosses).
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Automated event segmentation.  The structure of events in a narrative is considered crucial for our epi-
sodic memory42. Recent studies have explored various methods to automatically segment events from narrative 
text. While most of the work relies on HMMs12, careful LLM prompting can generate event boundaries that are 
more representative of the average rater than individual human participants17. Once segmented, narratives can 
be analyzed to uncover properties and relationships among events that may influence memory retention. For 
instance,43 found that LLMs can accurately score the plausibility of different agent-patient interactions in events.

Semantic and discourse properties.  Annotating the semantic and discourse properties in narratives 
requires methods that can integrate over long temporal windows (i.e., spanning multiple words, sentences, or 
paragraphs). Recent approaches have drawn upon methods from linguistics and natural language processing 
(NLP) to represent the semantic content of narratives. These include latent topic models44, sentence embedding 
methods13,19, and more recently, autoregressive language models (LMs). As machine learning methods continue 
their rapid pace of development, researchers can anticipate a variety of new methods for annotating complex 
semantic properties. For instance, recent work investigated the viability of large language models (LLMs) to code 
different categories of interest in sociolinguistics, such as figurative expressions (e.g. sarcasm, idioms, etc.) and 
humor45. While it was reported that pre-trained LLMs showed promising results, further development is needed 
before such models can be used in a completely unsupervised manner.

In a recent study by Lee and Chen46, sentence embedding techniques were used to construct undirected 
graphs representing the relationships between narrative events based on their semantic similarity. We apply 
these methods to the NFRD as displayed in Fig. 4. Following the procedures from Lee and Chen46, we find a 
significantly positive effect of semantic centrality - indicating the semantic similarity of an event to all others 
within the narrative - on the likelihood of recall for that event (p < 0.001 in a linear mixed-effects model); 
notably, the effect size (β = 0.27) mirrors that reported in Lee and Chen46. This replication of these high-level 
semantic effects using a fully automated scoring approach12 underscores the robustness of the dataset utilized 
in our study. We provide all code utilized in the application of these methodologies to the current dataset to 
facilitate future research.

Fig. 3  Extension of classic list-learning effects under naturalistic conditions. a) The probability of first recall 
as a function of serial position of an event in each narrative. b) The conditional probability of recalling each 
event following all other events, plotted for each spoken story. The shaded error bars represent bootstrapped 95% 
confidence intervals.

Fig. 4  Semantic narrative networks. To construct these semantic networks, embedding vectors were generated 
for text in each narrative event using Google’s Universal Sentence Encoder53. In generating these network 
diagrams, we threshold the cosine similarity at 0.35 between events to generate the edge weights. The thickness 
of the lines are proportional to these weights. The size of the nodes (representing events) reflects the semantic 
centrality across relationships, independent of a threshold. These networks were applied to the NFRD following 
the methods in Lee and Chen46.
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Autoregressive LMs, leveraging contextual information to generate predicted probability distributions for 
subsequent tokens or words, have also been utilized by researchers to compute a continuous measure of predic-
tion error or surprise. This approach incorporates more semantic information than other measures of surprise47. 
Prediction error, or surprise, has been shown to influence memory encoding and event segmentation6,48,49. These 
developments in NLP have allowed researchers to investigate how these model-based definitions of prediction 
error impact memory behavior, rather than relying on experimental manipulations of prediction error10,50.

Recent work has developed LLM-based methods to score other properties of the memory recall. For example, 
a recent study fine-tuned an LLM to distinguish recall details pertaining to the central event versus those that 
are unrelated18, replacing a more laborious interview method to score autobiographical recall51. This method has 
been used to understand how surprise and emotion impact autobiographical memory52.

Code availability
The code is available on https://github.com/phoebsc/Narrative-Memory-Dataset. The code is in Python, using 
standard packages such as NumPy and SciPy, and topic modeling functions from Heusser et al.12.
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