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Abstract

Humans learn by interacting directly with their environments
and by communicating via language. In this project, we ex-
plore this interaction between language and experiential learn-
ing through a novel sequential decision-making task, the “in-
structed bandit task” (IBT). In the IBT, agents make choices
and receive rewards sampled from an unknown Gaussian dis-
tributions, after being given linguistic hints. The IBT assesses
how linguistic input and experienced reward values combine
to determine choice behavior. We additionally propose a
novel Bayesian reinforcement learning model that combines
Bayesian updating from experience with propositional con-
straints that capture the meaning of the linguistic hints. As a
point of comparison, we evaluate both human participants and
Centaur, a LLaMA-based model fine-tuned to mimic human
behavior, on the IBT. Our results show that all agents converge
with the Bayesian model, and the granular difference in choice
sequences reveal the varied role instruction plays in decision-
making tasks.

Keywords: reinforcement learning, language, Bayesian
cognition, large language models

Introduction

A key feature of human cognition is the ability to adapt be-
havior to experience. The actions people take determine the
feedback they receive from the surrounding world, and these
rewards, consequences, or other variables then update their
beliefs and inform future actions. For instance, a huge lit-
erature on value-based decision-making and reinforcement
learning (RL) explores how humans make choices based on
the history of experienced rewards.

Much of what people learn is also derived indirectly by
communicating with others using language. For example, an
individual may receive recommendations from another per-
son (e.g. “avoid the campus food trucks, they are not that
great”) that alter their beliefs. Language is powerful in al-
lowing humans to communicate goals, rules, and limitations
in an abstract and general way (Gopnik & Meltzoft] 1987}
Lupyan & Bergen, 2015). The use of language as instruc-
tion, then, has the ability to greatly expedite human learning
and decision-making in some cases. In others, this commu-
nication may only provide partial information that is vague,
incomplete, or qualitative.

Most importantly, these two types of information, both rel-
evant for choice, rely on seemingly incommensurate cogni-
tive processes. Language comprehension exemplifies higher-
level cognitive processing; it is thought to be rapid and
symbolic, and it can incorporate explicit inferences about a
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Figure 1: Overview of the instructed bandit task (IBT).
Agents are given qualitative hints in the form of verbal in-
structions about the task then repeatedly make arm choices in
a standard multi-armed bandit. Their behavior will depend on
both the verbal, instructed information and direct experienced
rewards.
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speaker’s intentions among other factors (Goodman & Frankl,
2016). On the other hand, experiential learning from environ-
mental events lies at the opposite extreme; it is slow, statisti-
cal, and often implicit (Dayan & Niv, 2008; Sutton & Barto),
2018). Language can have varied effects on experience-based
tasks. It might provide specifications of goals, alter patterns
of exploration, suggest optimal strategies, or, in some cases,
lead people astray. One method to explore this dynamic
is therefore to study tasks where people are given instruc-
tions or linguistic hints and need to combine that information
with their direct experience in making a series of value-based
choices. Despite task instructions being critical to behav-
ior, such linguistic information is often ignored in modeling
choice behavior.

In this paper, we propose a new class of experiential learn-
ing tasks (based on the classic multi-armed bandit task) which
incorporate linguistic information in the form of hints and in-
structions. In the instructed bandit task (IBT), an agent makes
a series of choices and receives evaluative feedback on those
choices in the form of rewards. The agent’s goal is to maxi-
mize their rewards over the course of a game. Each agent is
also given a hint which provides qualitative information about
how to approach the task. This paradigm sheds light into the
relative weight that agents give to their own experience versus



the hints, and suggests how the specific semantic content of a
hint may structure choice and exploration. It differs from past
work regarding social communication in multi-armed bandit
tasks (Sankararaman, Ganesh, & Shakkottai,|2019) by includ-
ing natural language instruction in accounting for choice be-
havior.

Bayesian RL and language modeling

We model the choices made by the participants in our ex-
periment with two different approaches. The first leverages
Bayesian RL and treats the verbal instructions as prior con-
straints on the distribution of possible rewards (Chapelle &
L1, 2011). The second makes use of recent advances in large
language models (LLM) and samples choice data from the
Centaur model (Binz et al., 2024). Binz et al. recently re-
leased the Centaur model, a large language model (LLM)
fine-tuned on Psych-101, a large-scale dataset of past psycho-
logical experiments translated into a text-based environment
(Binz et al) 2024). The fine-tuning objective was to align
the base model, a LLaMA 3.1 70B model (Grattafiori et al.,
2024), to human behavior in a domain-general manner . One
interesting claim in the paper is that Centaur is able to predict
human behavior for entirely new behavioral tasks with only
the relevant task instructions. We were interested in evaluat-
ing it on IBT to carefully measure the impact that different
hints would have on the prediction behavior for a model that
relies heavily on linguistic input.

We begin by describing the IBT and proposing the
Bayesian RL model as a framework for how people might in-
corporate both linguistic instruction and experiential learning
in sequential decision-making. Next, we report a novel ex-
periment where human participants completed the IBT with a
dataset of different arm values and hints. Finally, we compare
the human choices with those predicted by both the Bayesian
RL agent and Centaur.

The instructed bandit task (IBT)

We chose to study how language integrates with experience
through a variant of the stationary multi-armed bandit prob-
lem, which is a simple yet powerful framework that formal-
izes the process of an agent reasoning through a sequential
decision-making task as an optimization problem (Sutton &
Barto, |2018). In our N-armed bandit problem, an agent re-
peatedly chooses between N arms, where each arm returns a
reward sampled from a fixed Gaussian distribution with un-
known mean u and known variance 62. The agent’s objective
is to maximize their rewards, and they must do so by learning
an estimate of the arm values, uj.y, in order to choose op-
timally. Critically, agents are given a hint in English which
provides qualitative information relevant for the task. For ex-
ample an agent might be told “One of the arms is more than
25”. Such information provides partial constraints on the task
and should affect choice behavior in systematic ways.

Bayesian agent

To model the learning process of an idealized agent, we take
a Bayesian approach as it allows for natural integration of
information from different sources in the posterior inference.
At each time step ¢, the agent selects an action a; and receives
areward 7, ~ N (us,62). The learning history up to time step
t is given by the full sequence of actions taken and rewards
received, , = (aj,ri,a2,72,...,a;,1;). In the base case of a
Gaussian bandit, the agent’s posterior distribution over the N
arm means conditioned on the learning history is,

P(IUI:N | ht) o< PO(,“]:N)P(ht |,ul:N) (1
—_—
Prior Experience

where P(u;.y) is the prior distribution—uniform under total
uncertainty—over the arm means. Without any instruction,
RL is a purely evaluative process (Sutton & Barto| [2018). The
Bayesian agent will explore all possible actions in order to re-
ceive feedback on each arm and iteratively learn the arm val-
ues. More specifically, we assume the agent samples actions
using Thompson Sampling at each time step and actively up-
dates the posteriors according to the new data (Thompson,
1933; |Wilson, Bonawitz, Costa, & Ebitz, [2021)).

Linguistic hints

Linguistic instruction often guides exploratory learning in
providing partial supervision on the arm values and subse-
quently narrowing the search space for the agent. In the con-
text of multi-armed bandits, the instructions or hints provided
contribute some information about the bandit arm values or
relationships, and the learning agent may use the information
from the hint in a similar manner as the prior. Following pre-
vious work in formal semantics and Bayesian language mod-
eling (Cresswell, 2006; |Goodman & Frank, 2016), we for-
malize the meaning of each linguistic hint as a function over
the parameter space. By mapping each hint to its functional
form, we can then model how language and instruction com-
bines with evaluative exploration and learning.

In the N-armed Gaussian bandit setting, the parameter
space is defined as ® = RV and captures all possible arm
mean configurations. Each linguistic hint / with meaning
f1 is a mapping from the task parameterization to the non-
positive real numbers extended with negative infinity, f :
® — R<gU{—co}. The extended real-valued functions allows
us to capture categorically true or false hints, represented by
0 or —oo respectively, as well as graded similarity judgements
between parameter values in a manner analogous to fuzzy
logic used in control engineering (Zadeh, [1965). Examples
of linguistic hints and their meaning functions are provided
in table[1l

Each meaning function is represented as an arithmetic and
logical term which is evaluated on a particular set of param-
eter values .y € ©. The terms adhere to a formal gram-
mar similar to those used in rule induction (Goodman, Tenen-
baum, Feldman, & Griffiths, 2008)) and are hand encoded to
the N-armed bandit setting. For example, we encode the hint



Table 1: Example hint encodings

Linguistic Hint (1) Meaning function (f)
“Arm 1 is more than 25” In1(y; > 25)

“Arm 1 is around 40” —|u1 — 40

“Arm 1 is similar to arm 2” —|m — 2]

“Arm 3 is the best”
“One of the arms is more than 25”
“Two arms are similar”

In1(argmax , u, = 3)
max,{In; (u, > 25)}
maXi,j:i;éj{—Wi —ujl }

“Arm 1 is more than 25” as In1(u; > 25), which includes a
Boolean sub-term (u; > 25), an indicator function 1(-), and
the natural log function In(-). If arm 1 indeed has mean over
25, the meaning function will evaluate to 0, indicating truth.
The final log transformation is necessary for introducing the
meaning function into the Bayesian model.

Integrating language and experience

To incorporate the information from the linguistic hints into
the Bayesian decision-making agent, we adapt equation |1|as
follows,

P(uin|he, 1) o< Po(uin)P(he|un)exp(Yfi(uin)}) Q)
(Y Ny N by S

Prior  Experience Hint

The addition of the term exp(yf;(ui.x)}) introduces a lan-
guage dependency in the agent’s posterior beliefs. The ex-
ponential term transforms the linguistic hint function value,
which takes on values between [—oo,0], into a probabilistic
range of values in [0, 1]. Intuitively, the contribution from the
linguistic hint can be considered a second prior term. Un-
der total uncertainty, the agent’s prior may be uniformly dis-
tributed over arm means, but the linguistic hint should sway
the agent’s initial beliefs in the absence of any experience
data. The 7y term also serves as a weighting for this depen-
dency and is necessary to capture variation among individu-
als, among other factors.

Continuing the example from above, at each time step,
the Bayesian agent will maintain a posterior distribution
for each of the arms. Recall that the hint “Arm 1 is
more than 25”7 will have a meaning function value of
f(“Arm 1 is more than 25”) = 0. Then, exp(0) = 1. In con-
text, the effect of this hint will be to keep all distribution val-
ues greater than 25 for arm 1, and zero out any values less
than 25 for arm 1. It will have no effect on the distributions
of the other arms. As the arm distributions are normalized at
each update step, the practical effect of this hint is that the
agent will more efficiently converge on a posterior distribu-
tion for arm 1 that has mean greater than 25.

5-armed instructed bandit experiment

We created a dataset of S-armed bandit scenarios alongside
distinct sets of linguistic hints. Each hint contains varying
informational value with respect to the parameter space, and

some hints are misleading. Each of the Gaussian arms in the
dataset abides by the constraints u € [0,100] and 6> = 10. An
example of a set of arm values and its corresponding hints is
given by:

(10, 20, 40, 60, 70): [

"{max2} 1is the best", #
"{max2} is sum of three arms", #
"The range of all arms is 60", #
"{minl} is better than {maxl}", #
"no hint", #

For each set of arm values, the order of the arms is fixed
as (min2, minl, mid, max1, max2). The variable hints are
necessary for implementing rotations of the arm values across
trials in order to avoid biases in their labels or memory of their
values. For each rotation and scenario, the hints self-updated
to reflect the new indices of the arms. Each scenario in the
experiment paired a set of rotated arm values and a hint and
was replicated at least 60 times in the experiment. For each
trial, the agent was given 20 arm choices to maximize their
rewards.

Human behavioral experiment

We recruited 63 participants from Prolific (Palan & Schitter;,
2018)). We chose the number of participants to ensure a min-
imum of 60 replicates per scenario. We additionally filtered
out any participants who did not complete all 15 games (2
people) or who failed the instructions quiz more than twice
(0 people) in our final analysis. We paid participants at a rate
of $15/hour and a bonus of up to $3.00 based on a random
sample from their points earned.

We gave the participants instructions to maximize their
point earnings over 20 arm choices, and each participant
played a total of 15 games. We followed a within-subjects
design and each game consisted of a unique scenario of lin-
guistic hint and arm values sampled from the dataset. The hint
was visible to the participant through all trials of each game
and fell into the three categories of “no hint”, helpful hints, or
misleading hints. When the participant was given “no hint” in
the control condition, they were additionally asked to provide
hints which may help another participant in that game. These
collected hints formed a rich hint dataset which we will en-
code into meaning functions for future iterations of instructed
choice tasks.

Centaur model

We configured the Centaur model with default hyperparame-
ters for sequence length, new tokens, and temperature (Binz
et al., 2024} |Grattafior et al.l 2024). We performed a tem-
perature exploration experiment to ensure that the results pre-
sented were not determined by the temperature of the model,
and we found the average choice sequences to be consis-
tent across temperatures. We additionally experimented with
whether the instructions given to the model should be taken



directly from the behavioral experiment or be adapted to the
wording of the multi-armed bandit experiments in the Psych-
101 dataset. Both led to similar model results, and thus we
made only the minimal edits to the instructions given to the
participants (such as adding in brackets to indicate model
choices) recommended by the Centaur paper (Binz et al.|
2024). Centaur was run 60 times on each distinct data sce-
nario and was also given rotated arm values across trials. The
model is given the trial history over the course of a game,
but each game serves as an independent simulation. Our
exact configurations and code to run the Centaur model ex-
periments can be found in https://github.com/eysu35/
Su_IBT_CogSci_25.

Bayesian RL agent

The Bayesian RL agent approximates equation [2] by algo-
rithmically integrating choice feedback with the linguistic
hints. Actions are first sampled using Thompson sampling
(Thompson, [1933). A generative model then computes the
experience-only posteriors by taking into account the learning
history 4; and updating the posterior means using conjugate
priors (Murphy, 2022)). Next, K samples are taken from the
posterior distributions and filtered by the weights correspond-
ing to a hint’s meaning function (Shachter & Peot, [1990). Fi-
nally, the normalized weights approximates the probability
of each sample conditioned on the linguistic hint, or the left
hand side of equation[2] from which Thompson sampling can
be applied again to generate new actions. We ran a series of
simulations using this algorithm in which the Bayesian RL
agents were given no hint, informative hints, or misleading
hints. Each scenario was replicated for 600 trials. Our exper-
iments were done using default sampling parameters detailed
in (Ho & Gureckis, [2023)).

Results
Linguistic hints aid learning

Panel A of figure |2| summarizes the results from the ex-
periments with human participants, the centaur model, and
Bayesian RL agent simulations across all hint conditions. We
measured the proportion of trials (out of 20 total trials) where
the agent made the optimal arm choice for each of the hint
conditions. Each line is averaged across all arm values, hints
within each category, and game trials of each scenario.

We performed a one-way ANOVA statistical test on the
collected data for each agent to evaluate the effect of hint
type on performance. We found that the variation between
the mean performance in different hint categories was sig-
nificantly larger than the variation within each hint category
in all cases (Human: F(2,899) = 46.12, p < 1073, Cen-
taur: F(2,597),= 58.96, p < 107'0, Bayesian RL agent:
F(2,2997 = 714.92, p < 10719, indicating that the addition
of linguistic hints had a significant effect on learning perfor-
mance. Further, in the post-hoc comparison using Turkey’s
HSD test, we found that all three hint conditions differed
significantly from one another. Across human participant

results and simulated results from the Centaur model and
Bayesian RL agent, performance in the helpful hint condi-
tion was significantly higher than the no hint condition (Hu-
man: p < 1073, Centaur: p < 1073, Bayesian RL agent:
p < 10719), and performance in the no hint condition was sig-
nificantly higher than the misleading hint condition (Human:
p <572, Centaur: p < 1073, Bayesian RL agent: p < 10719),

These results, that helpful hints meaningfully improve per-
formance and misleading hints undermine performance, sup-
port the idea that humans integrate their direct experiences
with the provided linguistic information to make their choices
in the multi-armed bandit task. The consistency of the effect
across humans and models also indicate that both the Cen-
taur model and the Bayesian RL agent are able to simulate
this behavior and integrate the linguistic and experiential in-
formation as well.

Learning trajectories

Next, we observed the individual learning trajectories of all
three agents when provided no hint, helpful, or misleading
hints. Both quantitatively shown in section and qualitatively
observed in panel B of figure [2} all three learning agents are
able to make more optimal choices over trials and when re-
ceiving helpful linguistic hints as opposed to when receiving
no hint or a misleading hint.

First, the“no hint” case (gray dashed lines in all subplots)
represents a control scenario. Here, no information on the
arm means was given by the linguistic hint, and the agents had
to make their first choice solely based on their prior, which
is uniformly distributed over the arm values in this setting.
As the first choice is randomly sampled from the 5 arms, the
average proportion that the optimal arm is chosen should be
0.2 across all game trials. This behavior is observed across
all three learning agents and in all scenarios.

A helpful hint (blue lines in all subplots in panel B) nar-
rows the search space of the arm means by upweighting the
agent’s prior in the direction of the optimal arm. For example,
the most helpful hint, “{max2} is best” (darkest blue line), re-
duces the problem completely and directly provides the agent
with the optimal policy. Thus, in the Bayesian model simula-
tion, the optimal arm is chosen in nearly every trial. Panel B
of figure[2]shows that the human participants, Centaur model,
and Bayesian RL agent all achieved a high proportion of opti-
mal action taken at trial O when they received this hint. Even
when provided the maximally helpful hint, we observe a strik-
ing pattern in both the human and the Centaur model data
where, after selecting the optimal arm, there is an exploratory
period of 5-7 trials while the agent explored other arm values.
An agent that relies entirely on instruction should omit ex-
ploration and chose the optimal arm in every trial. Thus, this
pattern is evidence that agents require both experiential and
evaluative learning to supplement and validate the linguistic
input.

The 5-armed bandit problem is a fairly simple task; it takes
around 5 trials to determine the optimal action to take, with
slight variation due to stochasticity and the overlapping arm
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Figure 2: A: Summary of the performance, as measured by proportion of choices optimal action was chosen at the 20th trial, for
all three models. The neutral condition indicates the ”No hint” baselines, the misleading and helpful conditions indicate the hint
type. All results are averaged across bandit scenarios and game trials. Error bars show 95% confidence intervals. B: Learning
trajectories for human participants, centaur model, and Bayesian RL agent over time trials. The dotted gray line indicates the
”No hint” baseline, blue lines indicate helpful hints, and the orange line indicates the misleading hint. All results are taken from
the scenario with arm values (10, 20, 40, 60, 70) and are averaged over all game trials with these values. Error bars show 95%

confidence intervals.

distributions. Still, even with an already efficient exploration
strategy, we observe in the lighter blue lines in panel B of
figure [2] that even partial information on the arm values can
improve choice performance. This result supports the claim
that language can improve sample efficiency in when making
value-based choices.

In each scenario of arm values, the agents were also pro-
vided one misleading hint whose meaning function con-
tributed information that contradicted the true arm means. In
panel B of figure[2] the misleading hint is shown in the orange
line: “The {minl} is better than {max1}”. In this case, the
agents’ choices underperform the “no hint” baseline at trial 0.
However, the net positive slopes of the orange lines indicate
that every agent learned over trials that the hint was untrue
through their experienced rewards. The exact shape of the
learning curve may also reveal the relative weight that agents
place on linguistic and experienced data.

While prior work has shown that verbal instruction can
have a strong influence on choice and lead to confirma-
tion bias in the interpretation of collected evidence, the re-
sults from the IBT demonstrate the agents overcoming this
phenomena combining both instructions and experienced re-
ward (Doll, Hutchison, & Frank,|2011}; Nickerson), |1998]).

Language models for simulating human behavior

We additionally analyzed the fine-grained choice behaviors
across trials in figure[3] First, we generated a behavioral sig-
nature for each agent by computing their average arm choice
probabilities at each trial for a given scenario and flattening
these into a single vector. We then computed the Pearson cor-

Condition Centaur Bayesian RL
No hint 0.117 0.677
Helpful hint 0.060 0.677
Misleading hint ~ 0.112 0.801

Table 2: Dissimilarity scores between model and human
choice sequences. Each row represents a different hint con-
dition. Each column represents the a model, Centaur model
or Bayesian RL agent. First, a correlation score is computed
between the model-predicted choice sequences and the hu-
man choice sequences. The dissimilarity score is then com-
puted by taking 1— Pearson correlation. The dissimilarity
score takes on values in [0,2], with higher values being more
dissimilar.

relation coefficient between these summary vectors for each
agent to get a dissimilarity score for their choices. We aver-
aged these scores across hints within the same condition (no
hint, helpful, or misleading) to arrive at the final scores be-
tween agents in table 2| A score of 0 means identical choice
patterns and higher scores mean more dissimilar choice pat-
terns.

Table [2| shows that the choice sequences predicted by the
Centaur model align much more closely with the human data
than those predicted by the Bayesian model across all hint
conditions. This result is further supported in the raster plots
shown in figure[3] which demonstrate a similarity between the
pattern of choices taken by human participants and the Cen-
taur model. As previously discussed in in section, the Centaur
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model is able to simulate the human-like tendency to explore
arm choices in early trials even when given a maximally help-
ful linguistic hint.

These results suggest that there is value associated with
language-model based models of cognition. While the
Bayesian model is able to provide an explanatory framework
for how the information from language and experience in-
tegrate in the learning process, the Centaur model is better
able to generate data that is predictive of human action. Per-
haps the performance gap between the Centaur and Bayesian
model in correlation with the human data suggests that the
Bayesian theory of integrating language and experience is
still missing critical components. Thus, from a behavioral
standpoint, these results support the idea that Centaur and fu-
ture language models can be useful for studying how people
learn from both direct experience and linguistic information
when making value-based choices.

Discussion

In this paper, we introduced the instructed bandit task (IBT),
in which a simple value-based sequential decision-making
problem was supplemented by the addition of linguistic hints.
Our experiments reveal that agents are able to learn more ef-
ficiently and effectively in the multi-armed bandit task when
provided helpful linguistic information. The contribution of
our work lies in taking the first steps towards modeling the in-
terplay of instructed and experienced information on learning
and exploration.

In particular, we provided a novel Bayesian framework of
mapping linguistic instruction to functions over the task pa-
rameters. This model effectively quantifies the amount of
information provided by the hint relevant for the task. We
also compared human behavior with simulated choices from

the Centaur model. As language models are able to compute
over natural language stimuli and thus do not require any hard
coding of the linguistic input, they bring new opportunities to
aligning models and human systems (Carvalho & Lampinen,
2025}, [Frank] 2025)). Interestingly, Centaur model was able
to mimic human choice sequences with surprising accuracy
and with no additional parameter fitting. In future work, we
aim to extend the Bayesian framework to allow us to model
in a trial-by-trial fashion the impact and relative balance of
instructed and experienced information on choice.

The version of the hints we explored were relatively simple
and gave agents direct information about the reward distribu-
tions with varying accuracy and completeness. However, the
IBT framework can be generalized and extended to tasks with
sequential dependencies between actions, more complex cues
(e.g., contextual or non-stationary bandits), and other dynam-
ics. Furthermore, interesting issues about the context under
which instructions were provided may be informative, such as
the trustworthiness or credibility of the instruction provider.
We additionally plan to model the hints collected from partic-
ipants in later work.

Much of the work in psychology and neuroscience that
explores experience-based choice and learning ignores the
fundamental role that task instructions and language play in
shaping human decision-making. Moreover, combining lan-
guage and reinforcement learning is a growing intersection of
interest in computer science, reflecting the important role that
linguistic and semantic representations play in guiding com-
plex behaviors (Luketina et al.| 2019). This project and the
IBT thus respond to these gaps and interests and moves for-
ward our understanding of how humans integrate of language
and experience.
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