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Abstract

Learning traps are false beliefs that entrench themselves by
discouraging the exploration required to correct them. In pre-
vious lab experiments, these learning traps have proven re-
markably difficult to prevent. Here, we investigate whether
learning traps remain stable in contexts in which both individ-
ual and social learning are possible. In two of our three exper-
iments, we found that learners trapped by a false belief were
significantly more likely to escape a learning trap when they
were able to observe another decision-maker’s choices (with-
out observing their outcomes). However, social learning was
not a panacea. Social learning was constrained by the chal-
lenge of inferring others’ beliefs, and trapped learners strug-
gled to learn from partners with sub-optimal decision rules,
even when their partner’s choices were informative. Collec-
tively, these results suggest that while social learning can help
overcome the limits of individual learning, learning from oth-
ers comes with its own challenges and limitations.
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Introduction
False beliefs are difficult to correct when they prevent the
exploration needed to correct them. For example, a person
might try an Indonesian restaurant for the first time and have
a bad experience, leading them to hold the belief that they dis-
like all Indonesian restaurants. In turn, this belief leads them
to avoid Indonesian food, which prevents subsequent updates
to their belief. If there exists an Indonesian restaurant that
they would really enjoy, their current (false) belief prevents
them from trying it. In such cases, we describe the learner
as “trapped” because their false belief causes them to avoid
potentially corrective experiences (March, 1991; Denrell &
March, 2001; Erev, 2014).

Several recent experimental studies have explored the sit-
uations under which such “learning traps” emerge, establish-
ing them as robust phenomena in individual learners (Rich
& Gureckis, 2018; Li, Gureckis, & Hayes, 2021; Allidina &
Cunningham, 2021; Liquin & Gopnik, 2022; Blanco, Turner,
& Sloutsky, 2023; Bai, Griffiths, & Fiske, 2024). In these
studies, learning traps arise from the links between an indi-
vidual’s beliefs, choices, and experiences. However, in real-
world environments, people can learn from others’ choices as
well as their own. Indeed, prior work has shown that peo-
ple can learn from others’ choices – even without observing
the outcomes of those choices (Toyokawa, Kim, & Kameda,
2014; Toyokawa, Whalen, & Laland, 2019; Hawkins et al.,

2023). Moreover, people may become more exploratory after
observing others’ exploratory choices, thus preventing them
from falling into learning traps (Ortmann & Luhmann, 2023).

Here, we investigate whether learners trapped by a false be-
lief remain trapped when both individual and social learning
are possible. Social contexts may provide additional informa-
tion that help people “escape” learning traps and form more
accurate beliefs about the world. A trapped learner might
observe others acting in ways that seem to contradict their
false belief, causing them to subsequently explore. For exam-
ple, after observing a friend visit a Indonesian restaurant, one
might reconsider an avoidance policy for this cuisine. Alter-
natively, an individual trapped with a false belief might “ex-
plain away” social information that is inconsistent with their
own belief. For example, a learner might disregard the line
outside an Indonesian restaurant because they deem the peo-
ple in line to be misinformed or different from themselves.
Finally, when an individual and their social partner share the
same false belief, this might reinforce the learning trap, in-
creasing confidence that their false belief is correct through
both confirmation and conformity.

Learned false-belief task
Our task builds upon an existing approach-or-avoid task in
which participants often learned a stable false belief (Rich &
Gureckis, 2018). In that task, individual participants were
presented with objects composed of several discrete features
(e.g., insects that vary along features like the number of wings
or the number of stripes). On each trial, the subject was
shown one object and asked if they would like to approach
or avoid it. Approaching gives information about the quality
of the object (in terms of gaining or losing money). Avoiding
gives no information. Critically, the task was structured such
that only certain combinations of the feature values of the ob-
jects were bad (see Fig. 1). For instance, in Fig. 1A only
objects that have feature value 1 on dimension 2 and feature
value 1 on dimension 2 are bad, the rest of the objects are
good. The optimal decision rule that maximizes the reward
while avoiding punishment is shown in Fig. 1B, where the
learner approaches all the good items and avoids the bad ones
(this is a “2D rule” since it requires attention to dimensions 1
and 2).

Rich & Gureckis found that subjects in these tasks tended
to instead adopt one of two possible “false beliefs” about the
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Figure 1: The structure of the learned false belief task. A.
Objects vary on several dimensions with binary values (0 or
1). Only objects with feature value 1 on both dimension 1
and 2 are “bad”; the rest are “good” B. The optimal “2D”
decision rule, which approaches all good things and avoids
all bad things. C & D. Two sub-optimal decision rules. The
policies here would avoid everything that has a value 1 on
dimension 2 (panel C) or dimension 1 (panel D).

task shown in Fig. 1C&D. In these cases, the subject either
learned to avoid all objects with value 1 on dimension 2, or
all objects with value 2 on dimension 1. Both of these rules
are too general, as the subject would also avoid some reward-
ing items. However, subjects following either rule would
never encounter negative feedback and were typically con-
vinced that they had mastered the task. This false belief per-
sisted because they had fallen into a learning trap — their
early mistaken beliefs had become self-reinforcing. Rich and
Gureckis (2018) found that only approximately 20% of par-
ticipants learned the optimal 2D decision rule, whereas ap-
proximately 45% of participants settled for a 1D decision rule
where they attended to only one of the two relevant features
(Fig. 3).

Learning from another person’s choices
In this current work, we leverage the structure of this task de-
sign and ask whether someone stuck in a learning trap is more
likely to escape after observing another person’s choices (but
not outcomes). In our experiments, subjects first completed
an individual learning session in which they faced a task sim-
ilar to the one above. Then in a second phase, they continued
to learn, but could also see the choices of a partner learning
the same task (see Fig. 2A).

The initial individual learning phase allowed us to first es-
tablish the baseline belief pattern of each individual, but also
to consider how learning in the second phase was influenced
by the concordance of the two social partner’s beliefs. For
example, learners trapped by a sub-optimal 1D decision rule

Figure 2: Experiment details. A. Schematic of the experi-
mental design. B. Two example cartoon bees from the stim-
ulus set. Cartoon bees varied along four binary feature di-
mensions: antennae/none, double/single wings, spots/stripes,
and six/two legs. The red arrows indicate the two relevant
features for a possible game instance. Dangerous bees are
indicated by a conjunction of two features, such as antennae
and spots (right). C. An example of a choice-sharing screen
from the social learning phase. Partners observed each other’s
choices, but not their associated outcomes.

(e.g., Fig. 1C&D) can be paired with a partner with the same
belief, a partner using the optimal 2D decision rule (Fig. 1B),
or a partner using a different sub-optimal 1D decision rule. In
the latter two cases, the trapped learner sees their partner con-
sistently approaching the bees they are mistakenly avoiding –
thus receiving the evidence required to escape their learning
trap.

Experiment 1
Experiment 1 was a live dyadic online experiment in which
human participants played an approach-or-avoid game de-
signed by Rich and Gureckis (2018), with an additional social
learning component.1

Method
Participants We collected data from 176 participants (88
dyads) recruited from Prolific. There were 84 participants (42
dyads) in the social condition, and 92 participants (46 dyads)
in the asocial control condition. Participants received $11.25
for participation (45 minutes at a rate of $15 per hour) and
received a performance-based bonus that ranged up to $4.

Stimuli and Design Participants encountered various car-
toon bees and had to decide whether to approach or avoid

1See the project website for a demo of our task, additional
visualizations, etc.: https://gureckislab.org/papers/#/ref/
budiono2024socialtrap



Figure 3: Fraction of participants following each decision
rule in the first test phase, before social learning. We show
data from all three of our experiments, as well as data from
Rich and Gureckis (2018) for comparison.

them. Bees could be friendly or dangerous – if you ap-
proached a friendly bee, you would harvest honey (+1 point);
if you approached a dangerous bee, you would get stung (-5
points).

Cartoon bees were designed that varied along four salient
binary feature dimensions. They could have antennae or no
antennae, they could have single wings or double wings, they
could have stripes or spots, and they could have 2 legs or 6
legs. There were 16 unique bees in total. Unbeknownst to
the participant, two of these four features could be used to
perfectly predict which bees were friendly and which were
dangerous, and a unique conjunction of these two features
determined whether a bee was dangerous (Fig. 1A). For ex-
ample, the two relevant features might be stripes/spots and
antennae/none, and bees were dangerous if and only if they
had both spots and antennae (Fig. 2D). In this case, the opti-
mal 2D decision rule would be to avoid a bee if and only if it
had both spots and antennae. Crucially, however, one could
also avoid all punishment (while missing some rewards) us-
ing a sub-optimal 1D decision rule that attends to only one of
the two relevant features (e.g. “avoid a bee if it has spots”).

Individual and Social Learning Phases Participants were
assigned to one of two conditions: a “social learning” con-
dition, or an “asocial control” condition. In both conditions,
participants were paired with a partner, completed an asocial
learning phase, and completed a test phase during which they
made choices without observing choice outcomes (Fig. 2A).
Then, participants in the social learning condition would enter
a social learning phase during which partners could observe
each other’s choices at the end of each trial (Fig. 2A). Par-
ticipants in the asocial control condition instead completed a
second asocial learning phase. Finally, all participants com-
pleted another test phase. In both conditions, there were 192
trials split over the four phases. Each learning phase consisted
of 64 trials, and each test phase consisted of 32 trials.

There are a few details about the social learning phase
that are important to note. First, participants could not copy

their partner’s choice on any given trial, because choices
were shared after each participant in the dyad had made their
choice. Instead, a partner’s choice was an additional piece
of feedback that could be used for learning. Second, choice
outcomes were not shared (Fig. 2B). This means that if a par-
ticipant decided to avoid a bee and their partner approached
it, they did not get to see whether the bee was friendly or
dangerous.

Finally, note that participants in the asocial control condi-
tion were still paired with a partner and waited to start each
trial together. Moreover, they were not told ahead of time
whether they would do a social learning phase or a second
asocial learning phase. This was done in order to control for
possible confounds between the two conditions, such as dif-
fering inter-trial interval distributions and social motivations.

Results

In each test phase, we classified participants’ behavior as fol-
lowing either the optimal 2D decision rule, a sub-optimal 1D
decision rule (a learning trap), or neither. Following Rich and
Gureckis (2018), a participant was classified as following a
decision rule if 30 out of 32 decisions in the test phase were
consistent with the decision rule. There are 16 unique bees,
each shown twice during the test phase, so this criterion al-
lows for two deviations from the rule over the two full passes
of the stimulus set.

Replicating Rich and Gureckis (2018), we found that the
learning trap was prevalent in the first test phase (before social
learning). Approximately half of all participants displayed a
1D decision rule, selectively attending to only one out of two
relevant features (Fig. 3). Furthermore, we found that the
learning trap was robust to additional individual learning tri-
als. A second individual learning phase did not significantly
reduce the number of asocial control participants who were
trapped (Fig. 4A).

After confirming the stability of the learning trap in the
purely individual learning setting, we investigated whether
learners who were trapped by a false belief could break free
by observing the choices of another decision-maker. As pre-
viously discussed, a trapped learner could in principle es-
cape by learning from either (1) a learner following the op-
timal 2D decision rule, or (2) a learner trapped by a different
sub-optimal 1D decision rule. In both cases, their partner’s
choices would provide evidence against the learning trap be-
cause their partner would approach the bees the trapped ob-
server is mistakenly avoiding.

Ultimately, our analyses were limited by the number of
naturally occurring dyads of interest. There were only 7 in-
stances of a trapped learner paired with a partner following
the optimal 2D decision rule, and only 1/7 subsequently es-
caped their learning trap. Although this fraction is larger than
the fraction of trapped learners who escaped their learning
trap in the asocial control group, the difference was not sta-



Figure 4: Effect on trapped learners of observing a partner following the optimal 2D decision rule. These plots show the
fraction of selected participants following each decision rule in the second test phase (with 95% CIs, bootstrapped with 1,000
resamples). In the social condition, we selected participants who (1) displayed a sub-optimal 1D decision rule in the first test
phase, and (2) observed an optimal 2D decision-maker during the social learning phase. In the asocial condition, we selected
participants who (1) displayed a sub-optimal 1D decision rule in the first test phase.

Figure 5: Effect on trapped learners of observing a partner following a different 1D decision rule. These plots show the
fraction of selected participants following each decision rule in the second test phase (with 95% CIs, bootstrapped with 1,000
resamples). In the social condition, we selected participants who (1) displayed a sub-optimal 1D decision rule in the first test
phase, and (2) observed a decision-maker who followed a different sub-optimal 1D decision rule during the social learning
phase. In the asocial condition, we selected participants who (1) displayed a sub-optimal 1D decision rule in the first test phase.

tistically significant (Fig. 4A; P > 0.32; Nsocial = 7, Nasocial =
48). There was also no significant effect on trapped learners
of observing a partner following a different sub-optimal 1D
decision rule (Fig. 5A; P > 0.3, Nsocial = 8, Nasocial = 48).

Experiment 2
In Experiment 1, we were limited by the number of naturally
occurring dyads of interest. To overcome this data limitation
in Experiment 2, we paired human participants with bots who
made choices according to programmed decision rules.

Participants
We collected data from 184 participants recruited from Pro-
lific. There were 140 participants in the social condition, of
which 69 observed a 2D decision rule during the social learn-
ing phase and 71 observed a 1D decision rule. There were

2All significance tests are one-sided bootstrap tests (1, 000 re-
samples).

44 participants in the asocial control condition. Participants
received $10 for participation (40 minutes at a rate of $15 per
hour) and received a performance-based bonus that ranged up
to $4.

Method

Experiment 2 was structurally identical to Experiment 1
(Fig. 2A). However, instead of observing another human
decision-maker during the social learning phase, participants
observed choices generated by a computer program which
implemented one of three decision rules: it could follow a 2D
decision rule (i.e., it avoided a bee if the bee displayed both
relevant features), or it could follow one of two 1D rules (i.e.,
it avoided a bee if it displayed just one of the two relevant
features). On a given trial, the bot’s response time was drawn
from a gamma distribution fit to the distribution of partici-
pant response times from Experiment 1. In the consent form,
participants were told that they would be either paired with a



human or a bot. All subsequent mentions of their partner re-
ferred to them as their “partner,” without specifying whether
their partner was a human or a bot.

We also changed the graphic design of the outcome feed-
back screen in Experiment 2. Due to a coding error, the new
outcome screens also showed each participant their total score
during the test trials. This meant that participants could have
inferred the outcomes of the test trials by noting their scores
before and after. However, the vast majority of asocial con-
trol participants who displayed a 1D decision rule in the first
intended test phase remained trapped by a 1D decision rule in
the second test phase (Fig. 4B). Indeed, no such participants
were able to transition to the optimal 2D decision rule, and
the percentage of participants persisting with a 1D decision
rule was not significantly different than 100%. This shows
that in the absence of a social learning intervention, partici-
pants’ beliefs had likely reached an equilibrium by the end of
the first learning phase.

The final change was that we added attention checks to
the social learning phase. On each attention check, partic-
ipants had to report their partner’s choice on the last trial.
There were 12 attention checks distributed randomly through-
out the social learning phase. We verified that participants in
the social condition were paying attention to their partner’s
choices. Over 90% of participants missed one or zero atten-
tion checks, and 74% of participants correctly answered all
attention checks.

Results
First, we confirmed the stability of the learning trap in the
asocial control condition. The learning trap was remarkably
stable, as evidenced by the fact that no trapped learners in
the asocial control condition were able to learn the optimal
2D decision rule after a second individual learning phase
(Fig. 4B).

Next, we tested whether trapped learners were more likely
to learn the optimal 2D rule after observing either (1) a learner
following the optimal 2D decision rule, or (2) a learner
trapped by a different sub-optimal 1D decision rule. Recall
that in principle, a trapped learner can learn from both kinds
of partners.

Unlike in Experiment 1, there was a significant effect of
observing a partner following an optimal 2D decision rule
(Fig. 4B; P < 1/1,000, Nsocial = 25, Nasocial = 19). A third
of the previously trapped learners learned the optimal 2D
rule after observing a partner following the 2D rule. This
shows that after observing a partner following the optimal 2D
decision rule, some trapped learners were able to infer that
they were mistakenly avoiding rewarding bees after observ-
ing their partner approach those bees.

Although a couple trapped learners were able to escape
after observing a partner who followed a different 1D deci-
sion rule, this was not a statistically significant improvement
compared to the asocial control condition (Fig. 5B; P > 0.1,
Nsocial = 24, Nasocial = 19). Trapped learners were either less
willing or less able to learn from a partner following a differ-

ent sub-optimal 1D decision rule, despite the fact that such a
partner would approach the bees that the trapped learner mis-
takenly avoids. In principle, this is the evidence required for
the trapped learner to escape.

Experiment 3

In Experiment 2, social information was only moderately suc-
cessful in helping trapped learners escape. Two thirds of
trapped learners remained trapped after observing an optimal
2D partner, and over 90% remained trapped after observing a
partner following a different 1D decision rule. We wondered
why there were not more trapped learners who learned from
their partners, and why trapped learners were much more
likely to learn from observing choices generated by a 2D de-
cision rule versus a 1D decision rule.

One possible contributing factor is the difficulty of infer-
ring another decision-maker’s decision rule. In our task,
decision-rule inference seemed to be a crucial first step to-
wards learning from a partner. Although it is theoretically
possible for participants to recall their partner’s response to
each stimulus, it seems prohibitively difficult due to the rela-
tive complexity of our stimuli. The challenge of decision-rule
inference could explain why many trapped learners generally
failed to learn from their partners in the previous experiments,
as well as why trapped learners were much more likely to
learn from an optimal 2D partner than a partner following a
different 1D decision rule. First, a 1D decision rule may have
been inherently harder to infer for someone with a different
1D decision rule, because it disagrees more with the other 1D
rule compared to a 2D rule. Additionally, trapped learners
may have deemed a partner following a different 1D decision
rule to be incompetent (as they incorrectly avoided half of the
rewarding stimuli the trapped learner knows about), thus ig-
noring their partner’s choices and choosing not to infer their
partner’s decision rule.

In Experiment 3, we tested the hypothesis that the chal-
lenge of decision-rule inference prevented participants from
learning from their partners. In particular, we removed the
need for decision rule inference by directly providing a de-
scription of the rule at the start of the social learning phase.
We reasoned that removing the need for decision-rule infer-
ence would allow us to better understand the extent to which
it limited trapped learners’ ability to learn from their partners.

Participants

We collected data from 192 participants recruited from Pro-
lific. There were 139 participants in the social condition, of
which 49 observed a 2D decision rule during the social learn-
ing phase and 90 observed a 1D decision rule. There were 53
participants in the asocial control condition. Participants re-
ceived $7.50 for participation (30 minutes at a rate of $15 per
hour) and received a performance-based bonus that ranged up
to $4.



Method
Experiment 3 was identical to Experiment 2, except in two
respects. First, we fixed the mistake in the outcome screen
so that the total score was correctly omitted during test trials.
Second, as previously mentioned, participants in the social
condition were told their partner’s decision rule from the first
test phase (before social learning commenced). Before being
told their partner’s decision rule, participants were first asked
to describe their own decision rule. They were asked “Which
bees should you avoid?” and responded by inputting natural
language into a text box. They were told that their answer
would be shared with their partner, and that their partner’s
response would be shared with them. An example description
of a 2D decision rule reads: “Avoid bees with both antennae
and dots on their body.” Participants in the asocial control
condition were also asked to report their own decision rule in
a “mid-game questionnaire.”

Results
Compared to previous experiments, trapped learners were
overall much more likely to escape the learning trap. It seems
that trapped learners benefited greatly from being able to read
their partner’s decision rule in addition to observing their
partner’s choices.

Eighty per cent of trapped learners paired with an optimal
2D partner were able to learn the optimal 2D decision rule,
compared to none in the asocial control condition (Fig. 4C;
P < 1/1,000, Nsocial = 25, Nasocial = 19). For comparison, in
Experiment 2, only a third of trapped learners paired with an
optimal 2D partner were able to learn the optimal 2D decision
rule (Fig. 4B).

Moreover, over 30% of trapped learners paired with a part-
ner following a different 1D decision rule were able to learn
the optimal 2D decision rule, compared to none in the aso-
cial control condition (Fig. 5C; P = 2/1,000, Nsocial = 32,
Nasocial = 19). For comparison, in Experiment 2, under 10%
of trapped learners paired with a partner following a different
1D decision rule were able to learn the optimal 2D decision
rule (Fig. 5B).

Altogether, these results suggest that participants were pre-
viously limited by the challenge of decision-rule inference
– both when they had to infer a 2D decision rule and when
they had to infer a different 1D decision rule. Notably, many
trapped learners still failed to learn from their partners even
after reading their partner’s informative decision rule. It was
not enough for a trapped learner to know their partner’s de-
cision rule, a trapped learner also had to (1) infer that they
were likely avoiding some rewarding bees, and (2) take the
risk of exploration. Moreover, a trapped learner was still less
likely to learn from the choices of a sub-optimal 1D decision-
maker versus the choices of an optimal 2D decision-maker.
The challenge of decision-rule inference did not wholly ac-
count for the disparity in Experiment 2. Thus, trapped learn-
ers observing a different sub-optimal 1D decision rule were
less likely to do either (1) or (2).

Discussion

Here, we found that people could escape learning traps by
learning from the choices of a partner. However, a major-
ity of trapped learners still remained trapped after observ-
ing a partner’s potentially informative choices, and trapped
learners were much more likely to learn from the choices of
a partner following an optimal decision rule versus a differ-
ent sub-optimal one that was nonetheless informative. Telling
trapped learners their partner’s decision rule (thereby remov-
ing the need for decision-rule inference) made trapped learn-
ers much more likely to learn from their partners, although
it did not change the fact that they were much more likely to
learn from a partner following an optimal decision rule.

We identified two possible explanations (which are not mu-
tually exclusive) for why trapped learners were less likely to
learn from a partner following a different sub-optimal de-
cision rule. First, some trapped learners could have been
employing a limited social-learning strategy, such that they
could only learn from their partner by copying their decision
rule verbatim. A trapped learner employing a “copy or not”
strategy could escape their learning trap by copying a 2D de-
cision rule, but not another 1D decision rule. The existence
of such limited social learners is evidenced by the substantial
fraction (over 15%) of trapped learners who copied a differ-
ent 1D decision rule after it was explicitly described in Exper-
iment 3 (Fig. 5C), jumping from one learning trap to another,
despite having collected the experiences necessary to act op-
timally.

Another possible explanation is that some participants’
willingness to learn from their partners was modulated by
their judgment of their partner’s competence. For instance,
suppose that Alice follows a 1D decision rule and observes
the choices of Bob, who follows a different 1D decision rule.
From Alice’s perspective, Bob appears incompetent because
he approaches only half of the rewarding bees that Alice
knows about(Fig. 1C,D). As such, Alice may decide not to
pay attention when Bob approaches bees that Alice avoids.
On the other hand, if Bob employs a 2D decision rule, then
Bob appears competent because he approaches all the reward-
ing bees that Alice knows about. Subsequently, Alice might
be more likely to pay attention when Bob approaches a bee
that Alice avoids. Such an effect of choice agreement on
social influence was found by Najar, Bonnet, Bahrami, and
Palminteri (2020).

More broadly, the present work suggests that social learn-
ing can be an effective intervention against learning traps. Fu-
ture work elucidating the contexts in which social information
is most influential can help us better understand the dynamics
of collective beliefs (Toyokawa et al., 2019; Witt, Toyokawa,
Gaissmaier, Lala, & Wu, 2024; Wisdom, Song, & Goldstone,
2013), and inform how we might design social networks in
order to mitigate learning traps (Erev, 2014; Hardy, Thomp-
son, Krafft, & Griffiths, 2023).
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