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Abstract

Helping is a universal human behavior, and is a core aspect of a
functioning society. However, the decision to provide help, and
what type of help to provide, is a complex cognitive calculation
that weights many costs and benefits simultaneously. In this
paper, we explore how various costs influence the moment-to-
moment decision to help in a simple video game. Participants
were paired with another human participant and were asked to
make repeated decisions that could benefit either themselves
or their partner. Several preregistered manipulations altered
the cost each person paid for actions in the environment, the
intrinsic resource capacity of individuals to perform the task,
the visibility of the other player’s score, and the affordances
within the environment for helping. The results give novel in-
sight into the cost-benefit analyses that people apply when pro-
viding help, and highlight the role of reciprocity in influencing
helping decisions.
Keywords: decision making; social cognition; helping; col-
laboration; altruism; reciprocity

Introduction
Helping others is central to our lives but also mysterious
from a computational perspective. A large body of research
in economics and psychology has described helping as an
altruistic behavior where an agent sacrifices local personal
gains for less tangible rewards of self-presentation, future
reciprocity, and collective benefit (Marsh, 2016; Andreoni &
Miller, 2008; Fehr & Fischbacher, 2003; Tomasello, 2009).
However, the local decision to help is often made quickly
in the moment and simultaneously balances many complex
costs and considerations. Perhaps most importantly the de-
cision of if to help depends on an analysis of what help is
needed. For example, if a person stops you on the street to
ask for directions you might be happy to offer verbal direc-
tions, but if they expected you to travel several miles with
them, or carry them to their destination, you might be less
willing to assist. You might also consider several other fac-
tors like your personal suitability to help in comparison to the
other person (e.g., we understand children to be more lim-
ited than adults and thus help them in cases where it would
seem odd to help an adult). In the span of a short interaction,
even with a stranger, we seem to effortlessly analyze these
and other factors to determine when we should help and how.

The underlying computations supporting how people un-
derstand when and how to help another person remain un-
clear. One of the biggest challenges when analyzing social
decision-making is the vast increase in sources of uncertainty

Figure 1: Experiment display from the perspective of the par-
ticipant controlling the Red farmer character.

compared to individual decision-making tasks (Ho, Mac-
Glashan, Littman, & Cushman, 2017; Kleiman-Weiner, Ho,
Austerweil, Littman, & Tenenbaum, 2016). In helping, these
include what help another person needs, what their goals are,
and the opportunity cost for providing help, among many
other factors. Traditional approaches within economics and
behavioral decision making attempt to simplify these con-
cerns using simple tasks where altruistic decisions to help are
obvious and discrete (see, e.g., Boyd (1988); Trivers (1971)).
However, in more realistic environments, individual helping
actions are complex, do not involve fixed or known costs and
involve sequences of actions that unfold over time. For ex-
ample, helping someone cross the street means helping them
navigate all the potential road hazards and may take a vari-
able amount of time and energy. Unraveling these nuances is
critical to building a more comprehensive cognitive account
of human helping and collaboration.

Overview of study
In the present study we designed a novel experimental task
to examine how people decide if and how to help1. The task

1It is helpful to clarify the distinction between helping and col-
laboration. One unique feature of helping is that the two agents have
individual goals (separate reward functions). When one agent helps
another, they devote effort towards the partner agent’s goal, poten-
tially sacrificing their own reward or incurring costs to do so. In



was structured such that each player had their own distinct
rewards, but also the ability to affect the other player’s re-
wards. More specifically, in the task, participants played as
a “red farmer” and a “purple farmer” tasked with picking up
vegetables and delivering them to a barn (see Fig. 1). Vegeta-
bles were either red or purple, with red vegetables contribut-
ing exclusively to the red farmer’s reward and purple vegeta-
bles contributing exclusively to the purple farmer’s reward.
Players could pick up either color of vegetable, and were in-
centivized to perform the harvest efficiently because walking
around the farm was costly.

Under this design, participants’ actions can be character-
ized by whether the action mainly benefits them (e.g., picking
up their own color vegetable) or their partner (e.g., picking up
their partner’s color vegetable). At the same time, the deci-
sion of how to help is quite undefined. While help always
involves picking up the other agent’s vegetables, which veg-
etables to pick up matters quite substantially (e.g., picking up
an object very close to the other agent might force them to
walk even further for their next item). Additionally, differ-
ent amounts of energy can be expended on actions depending
on the walking distance from the current location. Helping
might also unfold in real time across many turns, where help
is provided or withheld based on an ongoing assessment of
the local context. We define different measures of helping
that account for the rate at which players choose helpful ac-
tions, as well as how costly those actions are, and how they
vary based on the features of the environment and partner.

We predicted that participants would help more when task
costs were lower, and when they could see their partner’s
score as well as their own (increasing awareness of the other
person’s situation). We also predicted that participants would
help more when they had greater abilities than their partner
(specifically, a larger capacity backpack in which to carry
vegetables). Finally, we predicted that the affordances of
the environment – how different subtasks were distributed
spatially – would influence helping behavior. Under this
view, helping is “opportunistic” and occurs at moments where
the energy expenditure to help is momentarily lowered. We
tested these predictions through pre-registered analyses of our
design.

Critically, in none of the conditions were subjects required
to help (and, in fact, the reward structure of the task discour-
aged helping). However, we expected spontaneous and natu-
ral examples of helping to emerge based on the hypothesized
variables above as well as others including expectations of
reciprocity that emerge over repeated interactions (Stephens,
1996; Fehr & Gächter, 2000).

Experimental method – The Farm Task
The experiment was designed to create a small “virtual
world” where individual agents pursue their own rewards but
have the possibility of helping other agents in the same en-

contrast, collaborative agents generally work to maximize a com-
mon goal shared by all players.

vironment. The experiment was conducted in a real time,
turn-based video game with a randomly paired human part-
ner (see Fig. 1). The experimental protocol and preliminary
analyses were pre-registered2, and a full demo of the game,
as well as gameplay from every recorded participant session,
is available on a project website3.

Participants
Participants were recruited on Prolific (https://www
.prolific.co; Palan and Schitter (2018)) to take part in a
psychology experiment. Subjects were informed that the task
would require them to play a video game with another online
player set around collecting the harvest on a farm. After pass-
ing a comprehension check of the instructions and completing
a brief CAPTCHA (Von Ahn, Blum, Hopper, and Langford
(2003)) task, participants entered a waiting room to be paired
with another player online. The task began immediately af-
ter participants were assigned to a pair; if participants did not
find a pair within five minutes, they exited the experiment and
received partial compensation for their time at a rate of $15
per hour. The full experiment took about 30 minutes and par-
ticipants were paid a $7.50 base rate plus a bonus of up to $5
depending on their performance (an average pay rate exceed-
ing the local minimum wage where data were collected).

We collected data in March and April of 2023 from 750
participants who were paired and began the game together
(375 dyads). Dyads were excluded from analysis and mod-
eling if their data was incomplete, e.g., if one participant left
the experiment early. The final dataset includes complete data
from N = 628 participants (314 dyads).

Experiment Design
In the experiment, two anonymous Prolific users were ran-
domly paired together to play 12 rounds (“games”) of the
farm task in one sitting (“session”). In each game, partici-
pants controlled small avatars on a virtual two-dimensional
“farm” (similar to well known video games like Harvest
Moon or Stardew Valley). The farm was composed of an
open field with several recognizable objects (vegetables) ar-
ranged in various locations on a grid. The object were either
red (strawberries or tomatoes) or purple (eggplant or turnips).
Players were randomly assigned at the start of the task to
control either the “red” farmer avatar or the “purple” farmer
avatar (lower left corner of Fig. 1). The goal of both play-
ers was to efficiently pick up and deliver the vegetables to a
barn where objects could be stored (upper right corner of the
farm in Fig. 1). A game ended once all vegetables were suc-
cessfully delivered to the barn. Importantly, nowhere in the
instructions was it suggested that one player might help the
other.

Players began each round with a set amount of “energy,”
which was depleted proportional to the distance the avatar
“walked” to encourage efficient strategies for collecting the

2https://aspredicted.org/QGG SKJ
3https://exps.gureckislab.org/e/helping-game

-viewer/



harvest. Critically, players only earned bonus points as a
function of the quantity of their own color vegetables deliv-
ered and their own remaining energy. For instance, the red
farmer’s score was computed as the number of red vegetables
multiplied by the red farmer’s remaining energy units at the
end of the round. However, players could choose to pick up
vegetables of either color, choosing to incur energy costs to
benefit their partner (i.e., “helping”). Participant might help
one another due to altruism, a desire to complete the game
faster, or any number of alternative reasons, which we revisit
later in the discussion. As part of the design, players had a
finite backpack capacity which limited how many vegetables
they could carry at one time before they had to drop off their
harvest at the barn.

Within each game, one participant was selected randomly
to go first. Then, participants alternated turns in which they
clicked on a target object to direct their avatar’s movements.
Eligible targets varied from one turn to the next but included
all remaining vegetables on the farm (if the participant’s back-
pack was not full), the barn (if they were carrying one or
more vegetables), or a small pillow icon labeled “(Pass)” to
pass their turn (see top right of Fig. 1). Participants could
not move to arbitrary open parts of the farm. A text box on
the top left of the screen provided information to both players
about whose turn it was; if a participant chose to pass their
turn, or did not decide within 10 seconds, the text box briefly
(2500ms) displayed why the turn had ended.

After an eligible farm target was selected, the player’s
avatar automatically walked to the selected destination using
the shortest path available to standardize action costs across
participants (i.e., agents did not have to plan or optimize their
walking path). The shortest path algorithm navigated around
the location of other players because agents could not occupy
the same grid tile at the same time. When participants visited
the barn, all the objects they were currently carrying were
deposited, leaving their bag empty. In addition, players im-
mediately moved two tiles out of the way of the door to the
barn so as to not block the entrance for the other player (these
automatic steps incurred standard energy walking costs but
were equal for each agent).

A score board was present on the right hand side of the
screen. The amount of information shown varied by condi-
tion, but both players could always see the size and contents
of the backpacks and the farm box (barn), their own remain-
ing energy units, and their current score (a count of how many
vegetables of their color were stored in the barn). The experi-
ment manipulated whether players saw their partner’s current
energy and score in addition to their own.

Experimental Conditions and Hypotheses
In order to provide a broad survey of the potential ques-
tions this paradigm can address, we varied several features
of the environment and gameplay within and between sub-
jects. First, we expected that aspects of the layout and design
of the environment might influence helping decisions. Cer-
tain arrangements of objects in the environment might have

Figure 2: A: Two of the twelve starting arrangements that
vary in “patch uniformity,” or whether adjacent vegetables are
(Env. 1) or are not (Env. 2) of the same color. B: Performance
by condition; average points earned in a game by a single sub-
ject. Error bars are 95% confidence intervals. Cost, visibility,
and resource condition were constant within dyads across all
twelve games in a session. (**: p < 0.01, ***: p < 0.001
from independent two-sample t-tests between conditions.)

made it easier, and more tempting, to help the other agent due
to changes in the moment-to-moment energy cost of help-
ing. Environment layout was varied within-subject such that
participants encountered twelve unique environment layouts
during the task.

In addition to the within-subject environment variations,
we manipulated three two-dimensional task variables be-
tween dyads (cost, resource balance, and score visibility).
We anticipated that the task’s cost structure, and specifically
the overall global cost of helping, would impact collaborative
behaviors (with helping being more common in cases where
it carried lower personal cost). Next, we thought the balance
of resources or ability amongst the two players would change
their dynamics (as a person helping another may have some
unique capacity lacked by the person needing help). Lastly,
we considered that participants might help more or less
depending on how much information was available to them
about the score of their partner; participants might help more
if the impact on their partner’s score was more salient.

The full factorial design incorporating these three two-
dimensional variables therefore included 23 = 8 between-
dyad conditions. The following subsections detail each of
the factors manipulated in the study.

Environment layout Of the twelve games each dyad
played together, each game started with one of twelve unique
“environments” reflecting the initial arrangement of farm
items on the field. Players’ starting positions and the location



of the farm box were constant across all environments, but
vegetable amounts and locations differed. Some example en-
vironments are shown in Fig. 2A, and all twelve environments
are viewable on the project website. Environments were pre-
sented in a random order for each session. There were sev-
eral features of the initial environment set-ups designed to
elicit variation in behavior. In some games there were an
equal number of the different colored vegetables, and in oth-
ers there were more vegetables of one color. Sometimes the
vegetables were located in patches of a single color, and other
times both colors were mixed within a single cluster, which
we called “patch uniformity” (as in Fig. 2A). The vegetable
clusters could have different sizes and locations relative to
the players. The range of environments was selected intu-
itively to test informal predictions that increasing the number
of the partner’s vegetables and decreasing patch uniformity
would increase helpfulness (because a player will more of-
ten be near their partner’s vegetable, allowing for less costly
opportunities to help).

Cost - Low or High Players began with 100 energy points
and used energy to walk around the grid world, with longer
distances requiring more energy. Since the bonus point cal-
culation for a given player was a product of the number of
their vegetables harvested and their remaining energy, energy
costs directly impacted the bonus payment participants could
earn. The cost for walking was 1 energy unit per grid tile in
the Low cost condition versus 2 energy units per tile in the
High cost condition. In both conditions, passing one’s turn
or not responding within ten seconds cost 5 energy units (no
character movement). The energy level could not go beneath
0, and when energy was 0, the participant could still move
around but would earn no bonus points on that game round.

Resource capacity - Even or Uneven The resource condi-
tion determined whether the two players had equal or unequal
backpack sizes. In the Even resource condition, both partici-
pants had a backpack that could maximally hold 4 vegetables
at a time. In the Uneven resource condition, one participant
had a larger backpack (5 vegetable capacity) and one partici-
pant had a smaller backpack (3 vegetable capacity). The as-
signment of larger or smaller backpacks for dyads in the Un-
even condition was random, and participants maintained the
same backpack size across all twelve games in a session.

Energy visibility - Full or Self The visibility condition ma-
nipulated how much information about scoring and energy of
the other player was available to each participant within the
game display. In the Full visibility condition, participants saw
the current energy level and score of both players in the game.
In the Self condition, participants saw only their own energy
and score. At the end of each game, the display showed ei-
ther the bonus points earned by both participants (Full), or
only the bonus points earned by the participant and not what
their partner earned (Self).

Figure 3: Helpfulness, or average number of helping ac-
tions in a game by a player, by experimental condition (as
in Fig. 2B).

Statistical analyses
In addition to pre-registered tests of our experimental ma-
nipulations, we also report the results of several mixed re-
gression models that helped account for nuance in the final
data-set. Specifically, the pre-registration did not anticipate
that the dependent variable was not normally distributed. As
such, we turned to models with less strict assumptions. Gen-
eralized linear mixed models were fit in R with the package
lme4 (Bates, Mächler, Bolker, & Walker, 2014) and were con-
structed by starting from a minimal model, then adding task-
relevant parameters only when they improved the model fit
according to likelihood ratio tests.

One mixed effects linear regression model, which we label
the Game-level Performance Model, predicted subjects’ per-
formance (i.e., total earned points) in a game given various
contextual features. The model consisted of eighteen fixed ef-
fects parameters which accounted for environmental features
(e.g., number of vegetables in the initial layout) and recent
helpful behavior (e.g., whether the player’s partner helped in
the previous game).

Separate but similar models predicted the likelihood for a
participant to help their partner at a game level (i.e., did the
participant help at any point in this game round?) and at a
trial level (i.e., did the participant help on this specific trial?).
These models had sixteen parameters since helpfulness was
the variable being predicted rather than a variable affecting
performance. The Game-level Helping Model provided a
measure of global features that encouraged or discouraged
helping, while the Trial-level Helping Model identified local
contextual factors that led to a specific helpful decision. All
models included random intercepts to account for differences
between subjects.

Results
After exclusions due to incomplete data, our dataset con-
sisted of N = 628 participants (314 dyads). The sample was
predominantly male-identifying (372 male, 243 female, 13
other/no response), and 76% of participants indicated their
race as Caucasian/white. The average age of participants was
37 years old (SD = 11.7). The game data are rich consist-
ing of moment-by-moment choices of individuals in a dyadic
task, but for the purposes of this analysis we focus on exam-



Figure 4: A and B show how “helpfulness” (average number
of helping actions in a game by a player) varies with player
backpack size and the color uniformity of clusters (patches)
of vegetables, respectively. C and D present the proportion of
trials in which a player chose to help given local contextual
features; In C, the costliness of the least costly helpful action
measured as distance (number of steps) to the closest part-
ner’s vegetable, and in D, the player’s number of remaining
energy units which contributed to bonus calculation.

ining how well participants performed the task and how much
“help” they provided in different contexts.

Pre-registered predictions

We conducted pre-registered Bayesian t-tests to evaluate the
effect of the between-dyad manipulations. Our data provided
support for only one of our predictions; a one-sided t-test
showed participants helped more when they had a larger ca-
pacity backpack than their partner (t(288) = 3.07, p < .01,
BF10 = 22.2). However, the dependent variable was not nor-
mally distributed, so these tests were not conclusive.

Game-level Performance

Fig. 2B shows average participant performance in several of
the experimentally manipulated conditions. While several
qualitative trends are readily apparent at first glance, the re-
gression model provided more rigorous testing to back up our
conclusions. We report regression parameter estimates, along
with 95% confidence intervals (CI) and p-values (Pr(> F)).
While space prohibits a full presentation of the model results,
one key finding was that participant performance decreased in
games where they provided help (-5.91, CI = [−9.33,−2.47],
p < .001) and increased with help from their partner in the
previous game (5.69, CI = [2.35,9.06], p < .001) and cur-
rent game (30.48, CI = [27.06,33.94], p < .001). Critically,
this result confirms that helping in the Farm Task is costly but
does benefit the player being helped.

Game-level Helping

Most importantly, we were interested in quantifying when
participants engaged in helping as a function of the features
of the environment. Our pre-registration defined helping as
the amount of energy a player expended to pick up vegetables
of their partner’s color. Although each player could pick up
and deliver vegetables of both colors, their reward depended
only on their own color items and energy. Therefore, when
a player chose to pick up a vegetable of their partner’s color,
they sacrificed their own energy without direct compensation.

The Game-level Helping model predicted the likelihood
that a player helps in a game given contextual features. Of
particular interest were features that reflected the amount of
helping of one’s partner in the current and previous game,
as well as one’s own helpfulness in the previous game. We
report parameter estimates β, their 95% CIs, and computed
Odds Ratios (OR) to aid interpretation of how each feature
increased (OR > 1) or decreased (OR < 1) the likelihood of a
participant helping in a game.

Although we had initially predicted that helping would oc-
cur more often as action costs decreased, the fitted model
showed no effect of the global cost condition on helping in
this experiment design. We cannot conclude from this that
costs do not matter to helping, but only that this design was
insufficient to detect a between-dyad effect. In contrast to our
predictions that helping would increase when one’s partner’s
score was visible, and that helping would increase when re-
sources (backpack capacity) were unevenly distributed, the
results showed no effect of the visibility (t(305) = −0.22,
p = .59, BF10 = 0.26) or resource (t(306) = 0.61, p = .27,
BF10 = 0.30) conditions on helping at the between-dyad
level at which these conditions were varied (see Fig. 3 for
game-level data). However, we did find that the likelihood
of helping increased as a player’s backpack size increased
(OR = 3.82, β = 1.34, CI = [1.12,1.56]) (also see Fig. 4A).
That is, in the uneven resource condition, the player with the
larger backpack was more likely to help than their partner.

The initial arrangement of each game affected how much
participants helped. When there were more of a player’s own
vegetables in the starting environment, they helped less of-
ten (OR = 0.22, β = −1.50, CI = [−1.61,−1.38]), whereas
they helped more often when there were more of their part-
ner’s vegetables (OR= 4.66, β= 1.54, CI = [1.41,1.67]). Al-
though we might trivially expect that players pick up their
partner’s vegetables more often when more of their partner’s
vegetables are present, players could also choose to pass their
turn instead of helping. Instead, players more often helped
their partner, perhaps in an effort to finish the round more
quickly than if they were inactive. As shown in Fig. 4B and
bolstered by the modeling results, participants helped less
when the patches were all uniform (OR = 0.25, β = −1.37,
CI = [−1.59,−1.15]), indicating a division of labor segre-
gated by clusters rather than color. That is, players prioritized
minimizing the distance between their actions over picking
up only their own color vegetable on each action.



Trial-level Helping
The Trial-level Helping model predicted the likelihood of a
subject choosing a helpful action on their turn. For a trial-
level model, there are a large number of potentially relevant
parameters, since it is possible that all aspects of the current
game state, such as the location of every vegetable or the play-
ers’ score and energy status, ultimately affect the decision of
whether to help. For our model, we focused on features that
would be relevant in the construction of a cognitive model, in-
cluding the experimental manipulations, the player’s remain-
ing energy, local costs of helping, and recent helpfulness. We
expected that players would help more often when a helpful
action was less costly, and that they would also help more
often if they considered their partner to be “helpful.”

The local cost of helping was defined as the costliness of
the cheapest helpful action a player could take on that trial -
specifically, the Manhattan distance from the player to their
partner’s closest vegetable (Fig. 4C). As we expected, the
likelihood of helping decreased as the local cost of helping in-
creased (OR= 0.45, β=−0.80, CI = [−0.84,−0.75]). When
the cheapest helpful action available was more costly, partic-
ipants helped less often.

Players took into account their own capacity when deciding
whether to help. Specifically, players were more likely to help
when they had more “energy” units remaining (OR = 1.27,
β = 0.24, CI = [0.13,0.35]) (Fig. 4D). Taken together with
the positive effect of backpack size on helping (Fig. 4A),
these results indicate that participants are more willing to help
when they have greater capacity, and might not help if re-
sources seem scarce.

Measures of reciprocity had a large impact on whether a
player decided to help. Players were more likely to help when
their partner had helped on the previous trial (OR = 1.35, β =
0.30, CI = [0.27,0.33]) and as the total number of helping
events by their partner across the whole experiment increased
(OR = 1.26, β = 0.23, CI = [0.17,0.30]).

Comparison with a heuristic agent
To further examine trial-level helping and direct sequential re-
ciprocation (e.g., one turn to the next), we simulated behavior
from an agent following a simple decision-making heuristic.
The agent followed a Nearest Neighbor policy, always select-
ing the closest vegetable. Fig. 5 shows the averaged propor-
tion of helpful actions on each turn within a game in the hu-
man data (left) and in simulated data between two Nearest
Neighbor agents (right). Separate curves distinguish whether
or not the deciding player’s partner had helped on the previ-
ous turn. The human data, unlike the simulated data, shows
a large gap between the two curves, revealing how the like-
lihood to help changes drastically as a function of whether
one’s partner has recently helped (potentially ruling out this
is an artifact of other aspects of the game).

Discussion
In this work, we conducted a large, pre-registered, factorial
experiment designed to explore human helping behavior. An

Figure 5: Proportion of helping events on each trial (turn)
averaged across subjects. The orange curve reflects the pro-
portion of helping actions selected on trials where the player’s
partner had helped on the previous trial, while the teal curve
reflects helping when the partner did not help on the previous
trial. The proportion is normalized by the number of helpful
actions available on each turn. Plots reflect data from the first
ten turns of games beginning with eight vegetables.

online, interactive two-player game was designed to examine
when, why, and how people help others. One amazing aspect
of our design is that helping other participants was not ex-
plicitly incentive-compatible in the design (people were only
paid for vegetables of their own color). As a result, all the
instances of helping in the task reflect genuine examples of
players spontaneously deciding to help their partner.

The results showed three key findings. First, people were
more likely to help when they were endowed with greater
resources than another agent. This effect was larger than
the manipulations of overall cost and score visibility. Sec-
ond, helping was inherently reciprocal, as participants help
another when they come to expect help for themselves from
the other player. However, people also think about their own
opportunity costs and benefits and are unlikely to help if the
cost of helping is large, as evidenced by the large effect of
the layout of the task environment on the moment-to-moment
decision to help.

While this work reveals local contextual features that affect
participants’ momentary decisions to help, the Farm Task de-
sign allows for many further investigations into helping and
collaboration. Behavior was non-trivial and could not be ex-
plained by a simple self-serving heuristic model, indicating
that the environment allows for complex cognition and plan-
ning. Future work can construct cognitive models using the
relevant task variables to build generative models of behav-
ior in similar environments. Comparing human behavior to
generative agents can also refute alternate explanations for
helping behavior, such as desire to finish the task quickly.

The virtual environment provided by the Farm Task allows
us to identify subtleties of helping behavior, highlighting de-
cisions that fall somewhere in between purely selfish and al-
truistic. Future work aims to build upon these results to iden-
tify computational models of how people decide when and
how to help.
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