
Investigating Flexible Role Binding in AI Agents
Brian Pennisi (bp2221@nyu.edu)

Center for Data Science, New York University
Bloomberg

Rheza Budiono (rheza@nyu.edu)
Department of Psychology, New York University

Todd M. Gureckis (todd.gureckis@nyu.edu)
Department of Psychology, New York University

Mark K. Ho (mkh260@nyu.edu)
Center for Data Science, New York University

Abstract

Humans can flexibly bind familiar functional roles to novel en-
tities in their environment. For example, children who have the
concept of “goal posts” can bind this abstract role to two hats
placed on the street. In doing so, they can port over existing ex-
pectations of “goal posts” for the duration of the game. In this
paper, we seek to explore artificial agents’ ability to perform
flexible role binding and rebinding. To this end, we designed
a Gridworld navigation game and tested a popular CNN-based
agent which has had success in other tasks involving visual and
spatial state spaces (e.g. Atari or Minigrid). To our surprise,
we found that while this architecture was capable of overfitting
to the training set, it was not able to learn flexible role binding
without intervention. We ultimately show that with carefully
engineered data augmentation techniques, our artificial agent
is able to learn the task. This suggests that the diversity of the
training dataset was a limiting factor.
Keywords: role rebinding; zero shot generalization in rein-
forcement learning; reinforcement learning; vision reinforce-
ment learning; overfitting; supervised learning; data augmen-
tation;

Introduction
Humans have the ability to flexibly bind familiar functional
roles to new entities in their environment. Consider the ex-
ample of children who have the concept of “goal posts.” They
can bind the abstract role of “goal posts” to two hats placed on
the street. With this, they port over their existing expectations
of “goal posts” while playing the game.

Such abilities have often been described in terms of ana-
logical reasoning within cognitive science literature, such as
Gentner, Holyoak, and Kokinov (2001).

In this paper, we look to understand whether artificial
agents can learn to perform flexible role binding and rebind-
ing. To accomplish this, we designed a Gridworld-like navi-
gation game (Chevalier-Boisvert et al., 2023). The game acts
as a test of whether artificial agents are capable of flexible role
binding. Our game takes heavy inspiration from the popular
video game “Baba is You.”1 In our game, the player controls
an agent and must navigate to a goal. Crucially, the agent and
goal can take the form of different objects in each trial. For

1https://www.hempuli.com/baba/

example, the agent can be a sheep and the goal can be a flag
(or vice versa). The agent can use an arrangement of certain
“word blocks” in the game to identify the correct role binding
– for example, the user can read the correct role binding “flag
is win” from the game screen (Figure 1). Despite this task re-
quiring flexible role binding, it is relatively easy and intuitive
for humans to complete.

We tested a CNN-based agent on this task similar to Mnih
et al. (2015). These CNN-based architectures have proven
effective at a range of visual and spatial tasks such as Atari
games, the Mario-like side-scroller CoinRun, and a Minigrid
(“DoorKey”) benchmark that measures generalization (Mnih
et al., 2015; Hilton, Cammarata, Carter, Goh, & Olah, 2020;
Sonar, Pacelli, & Majumdar, 2021). Despite the overall sim-
plicity of the task, we found that this architecture failed to
learn. Subsequent analysis showed that the model tended to
overfit to the training set but was not able to learn flexible role
binding.

Finally, we sought to understand why the CNN-based agent
failed to learn flexible role binding. We found that our model
struggled to use the rule objects, which can be interpreted as
configural cues, to complete the task (e.g., Figure 1), but had
greater success when the correct role binding was signaled
by a single object (e.g., the presence of a red ball). With this
knowledge in hand, we hypothesized that our model overfit
to the training set because it was “easier” to learn to memo-
rize training examples rather than use these configural cues.
Informed by the generalization angle of the diversity hypothe-
sis in Hilton et al. (2020), we constructed an augmented train-
ing set which included more training data with diversity at a
relevant level of abstraction. This technique improved perfor-
mance suggesting that the diversity of the training dataset was
a limiting factor in the original deep learning agent’s ability
to learn to use configural role cues.

Experiment Design
In these experiments, we created a simulation study with a
minimally constructed video game (“task”) to isolate and test
flexible role binding. We chose a CNN-based architecture for



Figure 1: Role rebinding example states. On the far left and far right side, the agent needs to navigate the white figure (YOU
object) to the flag (WIN object). On the middle left and middle right side, the roles are reversed. The agent needs to navigate the
flag to the white figure. The roles are determined based on the arrangement of “word blocks” in the top row, we refer to these
as “configural role cues.” For example, in the far left state, the objects arrange to create “BABA IS YOU” and “FLAG IS WIN.”
The former rule maps the white object to the agent and the latter maps the flag object to the location which the YOU object
must occupy to complete the task. The bottom row and the walls along the edge never change. The task was implemented as a
Minigrid environment by members of Gureckis’ lab.

the task given its success in other tasks involving visual and
spatial state spaces, such as Atari or Minigrid. In the next
section, we describe the so called “rebinding” task and how
we attempted to measure the agent’s ability to learn flexible
role binding.

Spatial Role Rebinding Task

We consider a minimal spatial role rebinding task inspired
by the popular game “Baba is You,” depicted in Figure 1.
The game is presented as a 2D Gridworld where an agent has
to navigate to a goal location. Other elements in the world
include obstacles (ie., walls, rocks) and “word blocks” that
describe the rules of the game. Critically the binding of ob-
jects to roles was altered on different levels such that, in some
cases, the task was to navigate the avatar (Baba) to the flag
(goal) and in other cases the roles were reversed, such that the
goal was to navigate the flag to the Baba avatar. Which role
binding was required for a level was depicted using “word
blocks” at the top of the Gridworld (e.g., “Baba is YOU, Flag
is WIN” or “Flag is YOU, Baba is WIN”). To successfully
complete a level of the game, the agent must navigate the ob-
ject which is bound to the “YOU” role through a 6x6 space to
occupy the same location as the object bound to the “WIN”
role. In this way, the task involves both spatial reasoning and
reasoning about object roles. Once the agent identifies the
role of the objects, it needs to use the relative location of
those objects to navigate to the goal (thus the optimal pol-
icy is highly conditional on the rule objects displayed at the
top of the world).

We call this role rebinding, or the “rebinding” task, because
the roles of the objects are changed between different runs of
the game. For the control, we have two tasks. First is the “no
rebinding” task. Here the agent need only learn the relative
spatial locations. We use one of the configurations in Figure
1 (the far left one) for this task. We also experimented with
an “object substitution” variant of the task, where each role

could be occupied by different objects but the objects could
only occupy a single role (ie., Baba is YOU, Flag is WIN;
Rock is YOU, Skull is WIN). It is less challenging than “role
rebinding” because the same object cannot take different roles
on different trials. For example, the agent can learn that the
YOU object is either “Baba” or “Rock.” On the other hand,
in the “role rebinding” task, “Baba” may be either the YOU
object or the WIN object – requiring the agent to adapt its
policy as a function of the role cues at the top of the screen.

Evaluating Spatially-Invariant Role-Rebinding
To fairly compare across different architectures and training
environments, we focus on behavioral metrics of task per-
formance. Specifically, we measured the success rate of the
agent in a fixed number of 20 steps, similar to the metric used
by the Multiroom experiments (Igl et al., 2019). To measure
overfitting, we compared the success rate score on the train-
ing set to that of the test set. A gap between the training
and test performance suggests the model is overfitting to the
training data. Our evaluation approach is designed to assess
generalization of role rebinding across spatial locations.

Problem Generation
We used Procedural Generation to create levels (Cobbe,
Hesse, Hilton, & Schulman, 2020). This consisted of config-
uring a distribution of rules displayed on the top of the game.
We also configured where the YOU and WIN objects can ap-
pear on the board, holding out 40% of Gridworld cells for the
test set. The difference between the training and test set is
that in the training set, the WIN object can only occupy 60%
of the cells in the grid at random. In the test set, the remain-
ing 40% of cells are used. We chose to hold out these cells
to ensure the model had never seen these states before, pre-
venting memorization. Given the translation invariant nature
of CNNs, we expected a network that has not overfit to gen-
eralize to the test set. We chose to randomly select these cells
to prevent the model from memorizing a pattern.



Model Architecture
For our Reinforcement Learning (“RL”) training, we use a
popular vision-based encoder inspired by Mnih et al. (2015)
and implemented using the CleanRL PPO Atari framework
from Huang et al. (2022). It uses a convolutional front end
with a fully connected hidden layer. Our RL task is set up
similar to the Multiroom setup in Igl et al. (2019). We also
run experiments using supervised training, since this can act
as our upper bound for RL when testing the efficacy of our
model’s ability to complete the task. Later in the paper we use
supervised training. The model architecture is the same, only
making adjustments necessary for supervised learning. We
fit solely the policy network, training the model to imitate the
pre-computed optimal policy with a cross entropy objective.
More details about the model and training setup can be found
in the Dropbox link.2

Results
We seek to understand if artificial agents, specifically CNN-
based architectures, can perform flexible role binding. To es-
tablish this, we judge models on their ability to spatially gen-
eralize their learned policy to a held-out test set. We should
expect the models to generalize in the “no rebinding” task
because it is a purely spatial task, similar to past successes of
these deep-RL agents.

On the other end of complexity, the “rebinding” task also
requires reasoning about the roles different objects play in the
game. We hypothesize that this should be the hardest for the
model to spatially generalize. We expect the “object substi-
tution” task to be somewhere in between since there are dif-
ferent objects playing each role in the game, but they are not
(re-)bound to multiple roles.3

Task performance
Table 1 shows that the model is able to spatially generalize
on “no rebinding” and “object substitution” tasks. However,
the model is not able to generalize on the “rebinding” task.
The best test score achieved on “rebinding” was 15% de-
spite reaching a training score as high at 95% (indicative of
overfitting). This was the best score achieved across many
different training configurations that involved standard vi-
sion based and RL regularization techniques, including batch
norm, dropout, and weight decay (all methods which are used
to reduce overfitting) (Cobbe, Klimov, Hesse, Kim, & Schul-
man, 2019). While the details of these experiments are omit-
ted for brevity, they can be found in the Dropbox link.

The performance on the control tasks is somewhat ex-
pected given vision-based encoders’ track record solving nav-
igation tasks (Mnih et al., 2015; Hilton et al., 2020). On the
other hand, these results demonstrate that “role rebinding” is
uniquely challenging despite its simplicity. In this next sec-
tion, we interpret our model’s representations to better under-
stand why it overfits on “role rebinding.”

2https://bit.ly/3JQsHM5
3Experiment code available upon request to the authors

Table 1: Model generalization on the “no rebinding,” “ob-
ject substitution,” and “role rebinding” tasks. “Steps”: num-
ber of steps used in RL training. “Return”: moving average
of the episodic return at the end of training. “Train”/“Test”:
percentage of tasks completed in 20 steps, or one trial, on
Train/Test set. Both the no rebinding and object substitution
models show strong test scores whereas the rebinding does
not. Per the last row, the non regularized model overfits.

Task Steps Return Train (%) Test (%)
Random Policy N/A N/A N/A 22
No rebinding 0.5m 0.50 100 96
Object substitution 1m 0.87 98 94
Role rebinding 1m 0.26 38 15
Role rebinding
(no-reg) 1m 0.86 95 4

Interpreting model representations
Hilton et al. (2020) use model interpretability techniques to
understand what visual inputs impact the behavior of deep
RL agents. Specifically, they determine how different objects
in the task influence the model’s policy and value function.
We do the same. However, since our input space is less com-
plex, we use more traditional interpretability techniques from
Molnar (2022). We also seek to understand whether the visual
encoder is learning useful features by using those features to
predict the rules and relative location of the goal compared to
the agent. From this analysis, we find no evidence that the
models in the rebinding task produce representations that can
be used to determine the abstract rules of the game.

Attribution First, we use interpretability techniques,
specifically attribution, using the Python library Captum to
understand which Gridworld cells most influence the model
policy (Kokhlikyan et al., 2020). As shown in Figure 2, both
models have the strongest attribution on the YOU and WIN
objects. Notably the rebinding model does not attend to the
rules, despite the optimal policy being a function of the rules.
Consistent with this, the learned policy has higher entropy
compared with the no rebinding policy, which doesn’t need
to condition its behavior on the rules.

Feature Classification Next, we assessed whether the out-
put of the value encoder, which captures visual features, con-
tains information about the rules or the location of the goal
relative to the agent. Specifically, we use the output of the
last layer of the encoder, pre-trained on each task, to fit a lin-
ear classifier to predict the binding rule (i.e., is Baba “YOU”
or is the Flag “YOU”?) or spatial information for states on
that task. We found no evidence that the rebinding model
represents the binding rules per Table 2, where it achieved a
test F1 score of 49, which is below chance.

In Table 3, we assess whether models trained on the no
rebinding and role rebinding tasks are able to identify the rel-



Figure 2: Baba Rebinding Attribution. The boxes in the left
column show grid-level attribution by the model for a given
action. The right side illustrates the state of the game. The
top row is for the no rebinding model and the bottom is for
the rebinding model. As we see in the grid level attribution
charts, both models are attending to the YOU and WIN object
but not the rules. For the rebinding model, where its behavior
is conditioned on the rule, the entropy (“Distr”) is higher.

ative location of the goal compared to the agent. We observe
the test score of the model pretrained on the no rebinding task
of 35. This suggests that pretraining on the purely navigation-
based task can be used to improve the model’s ability to deter-
mine the relative location of the goal compared to the agent.
This makes sense since CNNs can complete tasks which re-
quire spatial reasoning, such as navigating 2D Gridworlds
and some Atari games, like Ms. Pacman. Also the no rebind-
ing task is not misled by the need to simultaneously learn the
rules like with rebinding. With the rebinding task, the test
performance of the pretrained model is 31. We have shown
the model is aware of the location of each object but not the
roles so it is conceivable that it is guessing between opposing
directions, thus achieving a score close to 25. This may sug-
gest the complexities introduced by configural role cues cause
memorization, resulting in the model discarding information
about the task.

Using supervised learning to understand factors
limiting learning
Our RL agent could not learn the task. We first wondered
if the failure was due to our RL training procedure or gen-
eral difficulties in training RL agents. We thus used super-
vised learning to train our agent4, and found that it also failed
to learn the task in the supervised learning setting. Table 4

4We trained the role rebinding model in a supervised setting (re-
moving the additional complexity of approximating the optimal pol-
icy) since we could algorithmically compute the optimal policy for
any state.

Table 2: The ”rebinding” model does not produce meaning-
ful representations of the binding rule (i.e., “Baba is YOU”
or “Flag is WIN”) as evidenced by its test score of 49, which
is below the random chance score of 50. The object sub-
stitution model shows some evidence of being aware of the
rules with a test score of 68. Reported metric is F1 score.
”Random weights” is a randomly initialized network with no
pre-training on the task. Plus/minus is the standard deviation.

Random Weights Pretrained
Task Train Test Train Test
Object Substitution 61 ± 9 60 ± 9 68 59
Role Rebinding 64 ± 1 43 ± 0 48 49

Table 3: The ”no rebinding” model produces representations
which can be used to determine the relative location of the
goal compared to the agent based on its test score of 35. The
rebinding model achieves a score of 31, which may be within
the margin of error for knowing spatial information but not
the roles. Reported metric is F1 score. 8 class classifica-
tion for all possible directions, random guess score is 12.5.
“Random weights” is a randomly initialized network with no
pre-training on the task. Plus/minus is standard deviation.

Random Weights Pretrained
Task Train Test Train Test
No rebinding 35 ± 3 24 ± 2 46 35
Role Rebinding 40 ± 4 35 ± 2 29 31

shows this result. This suggests that there is an inherent diffi-
culty in the task, and that the limiting factor is either the train-
ing data or neural network architecture rather than the training
procedure. For the remainder of the paper, we present results
based on model training in the supervised setting.

Configural role cues are a limiting factor
Next, we sought to understand what factors of the task made
it so challenging to learn. We hypothesized that the configu-
ral role cues represented a barrier to learning to act in a rule-
dependent way. To test this hypothesis, we ran two experi-
ments where we removed the barrier of configural role cues
by way of providing a simpler, non-configural indicator of the
role. In both experiments, our agent demonstrated significant
improvement in its ability to perform flexible role binding in
these simplified tasks. This demonstrates that the configural
presentation of the role cues was a limiting factor in the pre-
vious experiments.

Role Injection We provided a signal of the rules directly
to the feature layer of our network. This way, we bypass the
CNN encoder which could be dropping binding rule infor-
mation. At each time-step, the binding rule was converted
to a one-hot vector and concatenated with the feature vector.
This allows us to assess whether the linear head is capable



Table 4: Percentage of tasks completed in 20 steps (perfor-
mance) of models trained using RL vs. supervised (SV) on
role rebinding task as a function of number of gradient up-
dates. “Train” (“Tr”) and “test” (“Te”) are reported as per-
centages.

RL SV
Updates Tr. Te. Updates Tr. Te.
86 13 12 1 14 10
172 22 8 10 25 4
343 38 15 200 50 4

2000 77 3

Table 5: Impact of binding “role injection.” We see that with
binding “role injection”, the model is able to successfully
generalize on the rebinding task. Trained on 200 updates.

No Inj. (%) Injection (%)
Task Train Test Train Test
No rebinding 99 80 99 79
Rebinding 50 4 99 67

of solving the task when the role features are unambiguously
available.

Per Table 5, we see the model is able to successfully gener-
alize for the rebinding task. This can be seen by the fact that
the test score for the “Injection” column is 67% for rebinding,
which is well above the 4% observed without it.

Visual Role Hint Our role injection experiments demon-
strated that our architecture was capable of learning a role-
dependent navigation policy. Next, we sought to investigate
if it could learn a role-dependent policy if a non-configural
role hint was presented in the input. We wanted to see if the
CNN was capable of propagating this information to the pol-
icy head.

The non-configural role hint took the form of an object
placed in a fixed location on the grid. For example, a green
dot would indicate the role “Baba is YOU” (left of Figure
3) while an orange square would indicate the role “Flag is
YOU.” As was also the case with the role injection exper-
iments, we did not consider the order that rules were pre-
sented since it doesn’t matter and removes another layer of
complexity in interpreting the rules. This means binding rules
of “Baba is YOU, Flag is WIN” and “Flag is WIN, Baba is
YOU” are equivalent.

Per Table 6, we see that augmenting the inputs with visual
role hints supported successful learning of the role rebinding
task. This is evidenced by a test score reaching 78% on the
task containing role hints, compared with 4% without them.

Together, the performance boosts afforded by both “role
injections” and “visual role hints” tell us that our architecture
is capable of flexible role rebinding when the rules are pre-

Table 6: Impact of “visual role hint.” We see that with “visual
role hint”, the model is able to successfully generalize on the
rebinding task. Role hints has half as many states.

No Role Hints (%) Role hints (%)
Updates Train Test Train Test
20 50 4 29 6
200 50 4 96 78

Table 7: Performance on rebinding task with and without
“task dependent” noise. Dataset sizes are 10k and 2.9k which
is <1% and 98% of the dataset for the noise and no noise re-
binding task respectively.

Task Dep. Noise (%) No noise (%)
Updates Train Test Train Test
200 49 4 50 4
2000 99 54 77 3
10000 100 67 98 9

sented is a straightforward way. Put differently, the model
struggles when the rules are presented in a distributed config-
ural format, as in the standard rebinding task.

Data diversity supports learning to use configural
role cues
We next wanted to understand if the inability to use configural
role cues was due to a limitation of the training data distribu-
tion. In particular, we hypothesized that the training dataset
might have been insufficiently large and/or diverse to sup-
port learning to use configural role cues. Indeed, previous
work has shown that generalization increases with the number
and diversity of procedurally generated levels in the training
dataset (Hilton et al., 2020).

To construct a larger and more diverse dataset, we gener-
ated new levels by adding “task dependent” noise in which
we add several benign “distractor” objects to the grid as in
Figure 3. Per Table 7, the noise helps the model to generalize
better in the ”task dependent” noise setting.5

We also found that increasing diversity at the relevant level
of abstraction was important. While generating new levels
by adding distractor objects improved spatial generalization
with configural role cues, generating new levels by adding
Gaussian noise to the input did not (Table 8). Our intu-
itive explanation for the success of adding distractor objects
is that adding diversity at the relevant level of abstraction
makes naive memorization of training examples more diffi-
cult, thus regularizing the model towards learning the true
abstract function.

5Although this strategy improves generalization with configu-
ral role cues, it still performed worse (67%) than role hints (78%).
Moreover, we present the results of one successful training run but it
was unstable. For more information on the instability see the Drop-
box link.



Figure 3: Left: Baba Rebinding with Role Hints. The green dot corresponds to the configuration of “Baba is YOU, Flag is
WIN.” Right: Baba Rebinding with Task Dependent Noise. Two different benign objects are added for each trial: lava (orange)
and skull (white) to the task. The agent cannot interact with them.

Table 8: Performance on rebinding task with handcrafted
task-dependent vs. Gaussian noise. Num updates=2k, dataset
size=10k. To add Gaussian noise, we added a tensor with
µ = 0, σ = 0.5 to the original input. We also tried σ = 1.0.

Gaussian Task Dependent
Train (%) Test (%) Train (%) Test (%)
36 6 99 54

Table 9: Summary of model spatial generalization results on
rebinding task under various training settings.

Setting Generalizes?
Default No
No rebinding Yes
Augmentation, Visual Hint Yes
Augmentation, Feature Injection Yes
Data Augmentation, Gaussian No
Data Augmentation, Task Dep. Yes

In summary, we found that the diversity of the training
dataset was a limiting factor in the original deep learning
agent’s ability to learn to use configural role cues. From
a psychological perspective, adding diversity to the training
dataset corresponds to adding “desirable difficulties” to the
learning curriculum, which has been shown to be beneficial
for human learners (Bjork & Bjork, 2011).

Summary
We sought to study if artificial agents, specifically those
CNN-based architectures that have found success in a range
of game-like tasks, can learn to perform flexible role bind-
ing and rebinding. We did this by testing it on a Gridworld

navigation game with a role rebinding element. Initial exper-
iments showed that these agents fail to learn rebinding (mea-
sured via spatial generalization to the test set) when roles
are presented as configural role cues (see Setting “Default”
in Table 9). This suggests a gap between how these agents
and humans learn. Where a human might look for an ab-
stract pattern, the agent seems to naturally memorize. We
then identified an augmented training regime which allowed
the model to learn the abstraction and generalize on the task.
It not only required a sufficient amount of training data, but
also diversity at the relevant level of abstraction (see Setting
“Data Augmentation, Task Dependent” in Table 9).

From a deep learning perspective, we conjecture that
adding diversity at the relevant level of abstraction makes
naive memorization of training examples more difficult for
the agent, thus regularizing the model towards learning the
true abstract function. Future work can be done to explore this
further. Overall, our results highlight the importance of care-
ful analysis of both the training environment and model ar-
chitecture in determining the learnability of specific patterns.

References
Bjork, E. L., & Bjork, R. A. (2011). Making things hard

on yourself, but in a good way: Creating desirable difficul-
ties to enhance learning. Psychology and the real world:
Essays illustrating fundamental contributions to society,
2(59-68).

Chevalier-Boisvert, M., Dai, B., Towers, M., de Lazcano,
R., Willems, L., Lahlou, S., . . . Terry, J. (2023). Min-
igrid & miniworld: Modular & customizable reinforce-
ment learning environments for goal-oriented tasks. CoRR,
abs/2306.13831.

Cobbe, K., Hesse, C., Hilton, J., & Schulman, J. (2020,
13–18 Jul). Leveraging procedural generation to bench-
mark reinforcement learning. In H. D. III & A. Singh
(Eds.), Proceedings of the 37th international conference



on machine learning (Vol. 119). PMLR. Retrieved from
https://proceedings.mlr.press/v119/cobbe20a.html

Cobbe, K., Klimov, O., Hesse, C., Kim, T., & Schulman,
J. (2019, 09–15 Jun). Quantifying generalization in rein-
forcement learning. In K. Chaudhuri & R. Salakhutdinov
(Eds.), Proceedings of the 36th international conference
on machine learning (Vol. 97). PMLR. Retrieved from
https://proceedings.mlr.press/v97/cobbe19a.html

Gentner, D., Holyoak, K. J., & Kokinov, B. N. (2001).
The Analogical Mind: Perspectives from Cogni-
tive Science. The MIT Press. Retrieved from
https://doi.org/10.7551/mitpress/1251.001.0001
doi: 10.7551/mitpress/1251.001.0001

Hilton, J., Cammarata, N., Carter, S., Goh, G., &
Olah, C. (2020). Understanding rl vision. Dis-
till. (https://distill.pub/2020/understanding-rl-vision) doi:
10.23915/distill.00029

Huang, S., Dossa, R. F. J., Ye, C., Braga, J., Chakraborty,
D., Mehta, K., & Araújo, J. G. (2022). Cleanrl:
High-quality single-file implementations of deep re-
inforcement learning algorithms. Journal of Ma-
chine Learning Research, 23(274). Retrieved from
http://jmlr.org/papers/v23/21-1342.html

Igl, M., Ciosek, K., Li, Y., Tschiatschek, S., Zhang, C.,
Devlin, S., & Hofmann, K. (2019). Generalization in
reinforcement learning with selective noise injection and
information bottleneck. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett
(Eds.), Advances in neural information processing systems
(Vol. 32). Curran Associates, Inc.

Kokhlikyan, N., Miglani, V., Martin, M., Wang, E., Alsallakh,
B., Reynolds, J., . . . Reblitz-Richardson, O. (2020). Cap-
tum: A unified and generic model interpretability library
for pytorch.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,
Veness, J., Bellemare, M. G., . . . Hassabis, D.
(2015). Human-level control through deep rein-
forcement learning. Nature, 518. Retrieved from
https://doi.org/10.1038/nature14236

Molnar, C. (2022). Interpretable ma-
chine learning (2nd ed.). Retrieved from
https://christophm.github.io/interpretable-ml-book

Sonar, A., Pacelli, V., & Majumdar, A. (2021, 07 – 08 June).
Invariant policy optimization: Towards stronger general-
ization in reinforcement learning. In A. Jadbabaie et al.
(Eds.), Proceedings of the 3rd conference on learning for
dynamics and control (Vol. 144). PMLR. Retrieved from
https://proceedings.mlr.press/v144/sonar21a.html


